Let's Code Blacksburg! “Talking Skull” Workshop, Part-1 — Build-n-Code Doc

All - https://github.com/LetsCodeBlacksburg/arduino-talking-skull v2017-10-26_tweeks (CC)(BY)(SA)
Part-2 Hware-Hacking-Guide (the skull)

This 4-6hr hands on workshop steps you through building and programming a proximity activated
“Talking Skull” that requires:
1 - Mini USB cable (blue)

1 - Funduino Arduino board (red, with extra pin headers)
1 - 9v Alkaline Battery w/attached clip

1 - DFPlayer mini, serial controllable MP3 player

1 - 4GiB uSD card (w/ten scary skull sounds preloaded)
1 - Speaker (8ohm, 3W)

1 - Ultrasonic PING distance sensor (HC-SR04, 4pins)
2 - Red LEDs

2 - 100Q resistors (for LEDs)

2 - 1kQ resistors (for MP3 serial lines)

4 - Female / Female connecting wires

12 - Male / Female connector wires

1 - SG90 micro 9g servo (for moving the mouth)

1 - popsicle stick (for reinforcing the servo mount)

(opt) - breadboard (if building other things vs making skull electronics permanent)
(opt) - foam board and velcro (unmounting & use arduino/mp3 in other projects)
-use of a dremel cutter and hot glue

1) Use First Cookbook Recipe - Blink

Before you build anything or do any real programming, you need to first open your the Files /
Examples / 01. Basics / Blink, click the compile/upload icon _[8 , and verify that blink is actually
working (blinking your pin 13 LED indicator). If that works, then try changing the blink speed of the
LED. This will verify that your computer and the installed arduino IDE software (from
www.arduino.cc) is properly configured to talk to your arduino. Get TA sign-off before proceeding:

TA SIGN-OFF:

2) Rough Calibration of Your Mouth Servo (get approx closed vs open servo values)

This next step is purely to check to make sure your servo is working, and that you get the approximate
values you think you will use to open and close your skull's mouth.

Before we actually attach the servo to the skull, we need to just hook the servo up to pin 6 (see
right/below), load the sample LCBB_servo-test.ino code from
the github repository, and test the servo movement starting with
open/closed values of ~90 and ~110.

NOTE: If connecting to a "Funduino" \ v
or a "sensor shield", the servo
connector (brown, red, orange) can
be connected directly to 3 pin sensor
connector for pin6 which includes
5v and ground.

Servo shown here connected to standard
Arduino.

https://github.com/LetsCodeBlacksburg/arduino-talking-skull
https://github.com/LetsCodeBlacksburg/arduino-talking-skull/blob/master/LCBB_Talking-Skull_Pt-2_Hware-Hacking-Guide.pdf

NOTE: We are not hooking the servo to the skull at this point.
This step is merely for testing your servo and verifying it's working well.

Example code snippet from full LCBB _servo-test.ino on guthub:

// adjust the values as needed once mounted in the skull.

int mouthClosed=125 ; // These values needto be discovered for your config.
int mouthOpened=80 ; // These values needto be discovered for your config.
int mouthDelay=300; // Time to allow one open or closed movement (1/2 cycle)

/] F*hxkkkkkkkkkkkk MAIN LOOP ***kkhkkhkhhhhhhkkk

void loop() {
myServo.write (mouthOpened) ;
delay (mouthDelay);

myServo.write (mouthClosed);
delay (mouthDelay);

delay(5000); // pause so you know which value is open vs closed

On you get your servo working, write down the experimental values you think you want to try in your
skull's jaw (if servo is mouted in the skull's right jaw joint (left looking at the skull).

Once working, save your code and call it Talking-Skull servo-test

mouthOpened = mouthClosed = mouthDelay = TA SIGN-OFEFE:

3) Ultrasonic “ping” Distance Sensor: .

To read up on the theory of the Ultrasonic distance sensor, look up the

INPUT: Ultrasonic “Eyes” Range Sensor section of the “LCBB Arduino ‘ ‘ i'—_
Cookbook” here. We're going to hook up our US-100 or HC-SR04

distance sensor to Ground and VCC (outer two pins) and pins 4 & 5 for
Trigger and Echo on the sensor respectively.)

NOTE: If using the red Funduino board, to keep from having to connect to CO®UNO
limited GND and 5v connections as shown in the right schematic, try)
making use of the ample g ="
G(round) and V (5v)
connector headers by
using a male/female
connector wire.

https://github.com/LetsCodeBlacksburg/arduino-recipes
https://github.com/LetsCodeBlacksburg/arduino-recipes
https://github.com/LetsCodeBlacksburg/arduino-talking-skull

For this workshop, instead of using the cookbook recipe, we recommend entering the code bnelow (or
if you're having problems getting it working, then copy the ping-test code from our github arduino-

talking-sk

//
co
co
co
lo

//

vo

}
//

vo

}

//
//
//
//

ull code repository):

Ping sensor

nst int trgPin = 4; // pin we're sending the trigger/ping signal on
nst int echoPin = 5; // pin we're reading back the echo on

nst long motionDist=6; // distance that triggers a action

ng distance=5000; // distance to be recorded by ping sensor
khkkkkkhkhkhhkhkkkxkxdxddd QETUP BLOLCK **%*%**kdxdxkkdkddkdxdxdxhddddrkxx

id setup() {
Serial.begin(9600); // for sending serial text back to your computer

// Set Up US-100 or HC-SR04 PING SENSOR I/O PINS
pinMode (trgPin, OUTPUT);
digitalWrite(trgPin, LOW); // this pin sends out the ping signal

pinMode (echoPin, OUTPUT); // just to make sure
digitalWrite(echoPin, LOW); // we clear any previous settings
pinMode (echoPin, INPUT); // and then use it as INPUT

delay (500);

khkkhhkkhkhhhhkkkkxdddddxx MAIN LOOP ** ***kkdkhhdhdhdhddkdxhrhrhdddddkdrhrhdddirx
id loop() {

delay(100);

distance=getDist(); // samples distance from ping sensor

delay(100);

////// Loop here until someone comes closer than motionDist value
while(distance > motionDist){
distance=getDist(); // sample distance
delay(100);
Serial.print("Distance = ");
Serial.println(distance);

}

Serial.println("******xxx****x*x Someone is close! ***xxkkkkkkkk*x").
Serial.print("Distance = ");

Serial.println(distance);

Serial.println("--move mouth, play sound--");

delay (5000);

Code from Arduino ping
kkhkkkhkhkhkhkhkhhhhhhhhhhhhhkhhhhhhhhhhhkhhkkkk*k

kkkkk getDist() kkkkkkhkhkhhhkhhhhhhhhhhhhhhhhhhkhkhkhkhkhkhkhkhkhkkrkkk*x
kkhkkkhkhkhkhkhkhhhhhhhhhhhhhkhhhhhhhhhhhkhhkkkk*k

long getDist ()

{

long duration, inches, cm;

digitalWrite(trgPin, HIGH); // start the outgoing ping
delayMicroseconds (10); // do the ping for 10us
digitalWrite(trgPin, LOW); // stop doing the ping

duration = pulseIn(echoPin, HIGH); // grab the delay of return echo

https://github.com/LetsCodeBlacksburg/arduino-talking-skull
https://github.com/LetsCodeBlacksburg/arduino-talking-skull

inches = microsecondsToInches (duration); // convert echo time to inches
//cm = microsecondsToCentimeters (duration); // use for cm

//Serial.print (inches);

//Serial.print("in, ");

//Serial.print(cm);

//Serial.print("cm");

//Serial.println();

return (inches);

}

// Original code from the ping sensor library
long microsecondsToCentimeters(long microseconds) {
// The speed of sound is 340 m/s or 29 microseconds per centimeter.
// The ping travels out and back, so to find the distance of the
// object we take half of the distance travelled.
return microseconds / 29 / 2;

}

long microsecondsToInches (long microseconds) {
// According to Parallax's datasheet for the PING)))
// 713.746 microseconds per inch
// See: http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.3.pdf
return microseconds / 74 / 2;

Get this code to compile and upload , and turn click your arduino serial monitor icon

_ to see if you're recording the approximate distance to a large flat object like a book or jacket. If you
get an error when clicking on the serial monitor, check your arduino software's tools / port setting and
make sure the correct serial device is selected.

You should be getting back data like this as you move objects away from and closer to your distance
Sensor:

Distance = 17

Distance = 17
Distance = 18
Distance = 19
Distance = 21
Distance = 20
Distance = 16
Distance = 12

Distance = 8

Distance = 5
kkkkkkkkkkkk** Someone is close! **kkkkkkkkkkhkkx

Distance = 5
--move mouth, play sound--

If your code is working.. SAVE IT with the meaningful name Talking-Skull distance-test.

Q: Look at the variables at the top of your program. What is the distance variable that triggers the
animation of the skull's sound and mouth?

Variable name = Variable Setting= TA SIGN-OFF:

Challenge:

Now when your distance sensor is triggered, instead of just printing
sound--", instead, pull the needed variables, setup and loop code to actually move the skull's mouth
servo opened and closed.

“_—_move mouth, play

Show this to your TA and get this signed off, and save this code as Talking-Skull distance+servo

TA SIGN-OFF:

4) Implement the DFPlayer Mini, serial controlled MP3 player:

The DFPlayer is a 3.3v input/output device and it is very sensitive and will die if it is not hooked up
exactly right. When hooking up this circuit, leave
it unplugged from USB and the battery and get
TA-helper sign-off before you plug in USB or
power it up. Hooking this MP3 player wrong can
destroy the serial control lines, making it useless
for this project.

WARNING: Do not hook up USB cable or 9V
battery before getting TA signoff on this section.
Not being extra careful at this stage can easily
blow the DFPlayer's serial 1/O control lines. Ask
me how I know... I inadvertently blew two
DFPlayers while writing this workshop. Learn
from my mistakes.

fritzing

Notice that the DFPlayer is connected to the 5volts pin for power, but that its serial TX (transmit) and
RXC (receive) lines are buffered (made safe) by going through two 1k ohm resistors. These resistors
just drop a couple of volts off the 5v on the arduino I/O pins so they're safe to use with the DFPlayer's
I/O pins. Not doing this, will blow the serial control lines of the DFPlayer.

Since we are not using a breadboard for this workshop, we're going to be hooking these resistors
directly in to two M/F connection wires, and pushing them directly into pins 10 & 11 of the arduino,
something like this:
Arduino TX(11) - MP3's RX(1)
Two 1k ohm resistors on TX/RX Lines Arduino RX(10) -« MP3's TX(2)

Just like we're hooking the serial lines, here's what the whole DFPlayer looks
like all using the direct connect method. Pin 1 (5v) is the upper left pin. Upper
right is the unit's pin 16 (_BUSY). This is how we are going to tell when the
DFPlayer is busy playing a sound (which is when we want to be moving the
mouth).

This code requires that you install the <DFRobotDFPlayerMini.h> library. Do

this from the arduino menu Sketch / Include Library / Manage Libraries and
search for the DFPlayer Mini_MP3 library. Install it if not already installed.

Here's the code for implementing a basic, sequential sound file MP3 player:

// Hardware wiring of DFPlay

//

// DFPlay mini --Vec(l)--RX(2)--TX(3)--DACR(4)--GND(7) +(6) -(8) _BUSY

/1 I I I I I I I I

// Arduino 5v 11* 10* a0 GND | | 12+

// \Spkr/

// * requires lk resisitor

#include "Arduino.h"

#include <SoftwareSerial.h>

#include <DFRobotDFPlayerMini.h>

/////////// HARDWARE SETTINGS/HOOKUPS ////////

//DFPlayer mp3 player

const int ardRX=10; // The arduino software Receive lins (goes to DFPlayer TX)
const int ardTX=11; // The arduino software Transmit line (goes to DFPlayer RX)
const int dfBusy=12; // From DFPlayer pin 16, active low (HIGH != playing sound)
int sndFile=1; // Sound file pointer.

int fileCount=9; // Either set the max # of files here, or load it from

myDFPlayer.readFileCounts ()
// NOTE: readFileCounts() also sees deleted files.
// May need to reformat card to load new sounds.
int setVol=25; //Set volume value (0~30)

// Software Serial Pins To DFPlayer
SoftwareSerial mySoftwareSerial(10,11); // RX, TX

DFRobotDFPlayerMini myDFPlayer;
void printDetail(uint8_t type, int value);

[11177177771771777717777
///111//7///////7///////// LARGE SETUP BLOCK //////////////11/11///1///
[11177177777777177171771777717777

void setup(){

// Set up DFPlay mini
delay (250);
pinMode (ardRX, INPUT);
pinMode (ardTX, OUTPUT);
pinMode (dfBusy, INPUT);
delay (100);
mySoftwareSerial.begin(9600);
delay (100);
Serial.begin(9600);
Serial.println(F("DFRobot DFPlayer Setup"));

Serial.println(F("Initializing DFPlayer ... (May take 3~5 seconds)"));

// Check for DFPlay initialization via softserial

if (!myDFPlayer.begin(mySoftwareSerial)) {
// if it did not work
delay(20);
Serial.println(F("Unable to begin:"));
Serial.println(F("1l.Please recheck the connection!"));
Serial.println(F("2.Please insert the SD card!"));
// T-SHOOTING
Serial.print ("INFO: player state / file counts: ");
Serial.print (myDFPlayer.readState()); //read mp3 state
Serial.print(" / ");
Serial.println(myDFPlayer.readFileCounts()); //read all file counts in SD card
while(true); // Hang forever if error

}

// if serial setup worked

Serial.println(F("DFPlayer Mini online."));

// configure settings

myDFPlayer.setTimeOut (500); //Set serial communictaion time out 500ms
myDFPlayer.volume(setVol); //Set volume value (0~30).
myDFPlayer.EQ(DFPLAYER_EQ NORMAL);
myDFPlayer.outputDevice(DFPLAYER_DEVICE_SD);

///// Print Status:
Serial.print ("SETUP-INFO: player state= ");

Serial.print (myDFPlayer.readState()); //read mp3 state
Serial.print(" / volume setting(0-30)= ");

Serial.print (myDFPlayer.readVolume()); //read current volume
Serial.print(" / EQ setting= ");

Serial.print (myDFPlayer.readEQ()); //read EQ setting

Serial.print(" / fileCount= ");
Serial.println(myDFPlayer.readFileCounts()); //read all file counts in SD card

// IR EEEE SRS R EEEE SRR EEEEEEEEEEEEEREEEEREEEERESEEEEEEEEEEEEEESEES]
// khkkkhkhkhkhkhkhkhhhhhhhkkkkk*x*x MAIN Loop kkkkkkhkkhkkhkkkkkkkkkkkkkk*x
// IR EEEE SRS EEEE SRR RS EEEEEEEEEEEEREEEEREEEERESEEEEEEEEEEEEEESEES]
void loop()

{

////// 1f at the last sound file, then loop back to the top (1)
if (sndFile == (fileCount+l)) {

sndFile = 1;
}

////// Begin playing the next sound file...
Serial.println("************** PLAYING ****************");
myDFPlayer.play(sndFile); //Play the next mp3
delay(100); // wait to start

////// While DFPlayer _BUSY line is active(low), use preferred laugh function.
while(!digitalRead(dfBusy) == true){

Serial.println("still playing...");

Serial.println("Good place to flash eyes & move mouth... ;)");

delay(300);
}

delay (200);
sndFile++; // Incriment to the next sound file

/1/11711/11//1/717/7////7/// printDetail() ////////////////1///1//77/
void printDetail(uint8_ t type, int value){
switch (type) {
case TimeOut:
Serial.println(F("Time Out!"));
break;
case WrongStack:
Serial.println(F("Stack Wrong!"));
break;
case DFPlayerCardInserted:
Serial.println(F("Card Inserted!"));
break;
case DFPlayerCardRemoved:
Serial.println(F("Card Removed!"));
break;
case DFPlayerCardOnline:
Serial.println(F("Card Online!"));
break;
case DFPlayerPlayFinished:
Serial.print (F("Number:"));
Serial.print(value);
Serial.println(F(" Play Finished!"));
break;
case DFPlayerError:
Serial.print (F("DFPlayerError:"));
switch (value) {
case Busy:
Serial.println(F("Card not found"));
break;
case Sleeping:
Serial.println(F("Sleeping"));
break;
case SerialWrongStack:
Serial.println(F("Get Wrong Stack"));
break;
case CheckSumNotMatch:
Serial.println(F("Check Sum Not Match"));
break;
case FileIndexOut:
Serial.println(F("File Index Out of Bound"));
break;
case FileMismatch:
Serial.println(F("Cannot Find File"));
break;
case Advertise:
Serial.println(F("In Advertise"));
break;
default:
break;
}
break;
default:
break;

There is much more info, t-shooting and DFPlayer functionality included in the dfplayer-test code on
our github repo here.

TA SIGN-OFF:

https://github.com/LetsCodeBlacksburg/arduino-talking-skull

5) Bringing It All Together!

XXXXXXX LEFT OFF HERE XXXXXXX

fritzing

