LET'S CODE

General Series - 3D Printing Design
Software Comparison (& More!)

OpenSCAD Overview

Jim Stoll /
jstoll@letscodeblacksburg.org . www.letscodeblacksburg.org | Q

http://www.letscodeblacksburg.org/

{00} OpenSCAD Overview

e Script-based 3D modeling

e Constructive Solid Geometry

o Designs are Constructed via Operations and Transformations on Solid
Geometry Primitives
m All designs are a combination of Cubes, Cylinders, Spheres and
Polyhedrons!

e Designer has precise numerical control over all objects
e Models are parameterized, so easy to adjust and tweak
e\\Vide assortment of libraries for complex objects
eOpenSCAD is based on a Functional Programming
philosophy

{00} A Few OpenSCAD Libraries

_EanScre'qul_e;_sl()I[. e

_F_ant_autline()

4l FanBody()
utout() i

Buttonmaker
Metric

{00} OpenSCAD Primitives

cylinder(r=5, h=20);

_ linder(r1=10, r2=5, h=15);
cube(10); 7/ v e
cube([20. 10, 3]); cylinder(r1=5, r2=0, h=5);
cylinder(r=5, h=5, $fn=3);
cylinder(r=6, h=6, $fn=6);

sphere(10, $fn=100);
sphere(10, $fa=40);
sphere(10, $fa=90);

{00} OpenSCAD Transformations

translate([20, 10, 5]);

- resize([7, 5, 3]);

rotate([90, 120, -45));

.........

colo»r(“BIue”);

{00} OpenSCAD Boolean Operations

union() { difference() {
cube(10); cube(10);
cylinder(r=2, h=10); cylinder(r=2, h=10);
} }

intersection() {
cube(10);
cylinder(r=2, h=10);

..................

S

{o0} Advantages/Disadvantages

OpenSCAD Advantages

e Text based scripting language
o Easy to see what’s going on
o [Easy to see changes between versions
o Highly compatible with Git workflows

e\Very Precise Control

o Everything is defined and controlled by the
designer

eSupports Modular Design
o Easy to build libraries, reuse code &
designs

eHighly Parameterizable

e\Works with Thingiverse Customizer
e Good for Functional/Mechanical
designs

OpenSCAD Disadvantages

e Text based scripting language

o Not everyone enjoys the math/text-based
approach to design

eEVERYTHING is defined and

controlled by the designer
o complicated models can become a bit
overwhelming (good modular design really
helps!)
eDoes not enforce Modular Design
o If scripts are not built in a modular fashion,

complicated designs can quickly become
an untamed beast

eNot a great tool for artsy, flowy type of
designs

{00} OpenSCAD Environment

@E‘Eénn

il
$y

Find

functional

Done

Wo N o BN

DR h s R B W W W W W W W NN NN NN NN NN R R
SOERORAEERYBUAUREEBENBONURNNBERRGLGERGRES

47
48
49

51
52
53

/|/F<9y fob base length (X dimension)
fob_length = 58;

//key fob width (Y dimensien)
fob_width = 20; - -
//key fob thickness (Z dimension) Scrl ptl ng Area
fob_thickness = 3;

//radius of key leop hole
hole_radius = 5;

//width of key loop
loop_width = 3;

//offset of key loop hole - percent of hole diameter
hole_offset_percent = 5@; //[@:18@]

//text to appear on the fob
name = "Jeremy";

//thickness of text (Z dimension) - positive values will protrude, negaive values will inset
text_thickness = .75;

//border spacing between edge of fob and text
text_border = 3;

//text font to use (can be any Google fonts from: https://fonts.google.com/)
text_font = "Classic Comic";

difference() {
fob();

£/if negative text_thickness, then sink text into face, and difference it from the fob
//(if positive text_thickness, then nothing will be differenced from the fob)
if (text_thickness < @)
translate([@, @, text_thickness + .@1])
name(};

¥

//if positive text_thickness, then just render it at its default Z position on the face
1if (text_thickness > @)
name(;

//the rectangular body of the fob, with the offset key loop
module fob() {
cube([fob_length, fob_width, fob_thickness]);

translate([fob_length - hole_radius + 2*hole_radius * hole_offset_percent/100,
fob_widths2, @1) {
difference() {
cylinder{r=hole_radius + loop_width, h=fob_thickness);
translate([@, @, -.884])
cylinder(r=hole_radius, h=fob_thickness + .@@8);

Ly

—

59 R_@aD @B Ded

[x] Console

Saved backup file: /Users/jstoll{Documents/OpenSCAD/backups/SimpleNameFob-backup-NyJWA385.5cad
Compiling design (CSG Tree generation)...
Compiling design (CSG Products generation)...
Geometries in cache: 11930

Geometry cache size in bytes: 104819880

CGAL Polyhedrons in cache: 309

CGAL cache size in bytes: 104800712

Compiling design (CSG Products normalization)...
Normalized CSG tree has 4 elements

Compile and preview finished.

Total rendering time: 0 hours, 0 minutes, 0 seconds

Rendering Area

Console Area

