
Let's Code Blacksburg's
Arduino Cookbook

Version 2022-07-11
By Monta Elkins, Eddie Sheffield and Thomas Weeks

Let's Code Blacksburg 2022 (AS)
Online PDF & code: https://github.com/LetsCodeBlacksburg/arduino-recipes/

https://github.com/LetsCodeBlacksburg/arduino-recipes/

How To Cook (use this Arduino cookbook)

What Is This Cookbook?
This Arduino circuits and programming instruction guide is
organized into a “cookbook” style layout. The cookbook
illustrates how to create and write various arduino based
circuits and programs. These instructions are organized into “Recipes” or instruction guides that can be
combined in different ways to come up with new creations. All the code from this cookbook is in our
code repository at https://github.com/LetsCodeBlacksburg/arduino-recipes/

How This All Works:
For example, want to make a robot? Learn how to move a servo motor with our Servo recipe. Then
learn how to read a an Ultrasonic Eyes recipe. Combine them to make a collision avoiding robot! Or
use the Potentiometer (knob) recipe plus the Sound/speaker recipe and you've got a musical instrument!
The only limit is your own imagination!

The circuit and programming recipes, just like this intro, each feature a What, How and Fail section –
quickly telling you what you're doing, illustrating how to do it, and what to look for if something fails.
Identifying failure is important as it is what enables you to “fail fast”, learn and move on quickly to
success. Failure is good! Without it, learning is difficult and much less satisfying.

Failure:
A bit more on failure – one needs to understand and embrace that Failure is a natural part of learning,
but before you can learn and move on from failure, you must:

1) Recognize failure has or is occurring
2) Step Back and determine (or guess at) the nature or root of the problem
3) Test Your Assumptions (of the problem) and correct assumptions when needed
3) Identify & Address the Problem, work around it or create a new way of
 accomplishing the desired outcome.

Also understand that the failure sections are not definitive documents on every possible failure you can
encounter for a given recipe. No “failure guide” can easily contain every possible failure for a given
circuit or technical process. The failure section is more a guide to help get your thinking cap back on
straight and think about the nature of the problem, and what quick fixes or work-arounds might get you
back on track!

Don't be afraid of failure! Identify it, embrace it, learn from it and move on.
“Negative results are just what I want. They’re just as valuable to me as
positive results. I can never find the thing that does the job best until I find
the ones that don’t.”
― Thomas Edison

Or as one of our class instructors cries out to his students,
“Fail fast, fail cheap!”
― Monta Elkins

1

https://github.com/LetsCodeBlacksburg/arduino-recipes/

Get Cooking! With Let's Code Blacksburg Cookbook Recipes:

Need Some Ideas To Get Cooking? Check Out These Recipes !!!

This whole cookbook is designed like legos. You put together the various recipes to create thousands
of cool, unusual inventions! For example, you can mix and match the recipes like this :

● Use the Light Sensor recipe to detect afternoon sunlight and close the blinds with a servo!
● The People Motion Sensor recipe you can detect movement, sound and alarm and then
 use the Ethernet shield recipe to send a TXT message or email!
● With just the Light Sensor recipe and a speaker you can make eerie sci-fi music!
● Combine multiple servos and potetiometers recipies to control a two axis robotic,
 popsicle stick arm (Advanced project. Ask for a special recipe handout if interested.)
● Use the Wired or Wireless Web recipe to share real time measurements to the Web or send
 via an SMS text message or email!

 The only limits are your own imagination, available memory, and I/O
pins! :)

* - Recommended or required for beginners ** - Really fun and easy for new beginners

Pg Recipe Name Description

4) Arduino Hardware & Pinout Overview See where to hook things up.
5) Arduino Cheat Sheet All the commands you need to at least know about.
6) *Installing Arduino Software & Drivers Recipe Required on new PCs to talk to the Arduino.
7) *TEST: LED (light) Blink Recipe Test compiles and uploads code to blink a built in LED.
9) OUTPUT: Serial Monitor Recipe Outputs text back to the PC. Great for live troubleshooting.
11) *BUILD: Breadboard or Protoboard Recipe Breadboards are your pallet for creating temporary circuits.
13) *INPUT: Push Button the most simple way of taking input.
15) *INPUT: Potentiometer Recipe A knob or “pot”, a adjustable resistor for creating a variable voltage.
16) **BUILD: LED Chase Light Recipe Wire up and blink a chase light circuit.
18) CONTROL: Servo Recipe A servo is a PWM, digital motor that you can control the angular position of.
20) CONTROL: Robot DC Motor Control Using the KeyesL298 H-Bridge motor controller w/DC motors.
24) INPUT: Ultrasonic “Eyes” Range Sensor Ultrasonic sensor to measure distance to objects up to 24” out.
26) INPUT: Line Following IR Sensor Using a three-element infrared line sensor.
28) CONTROL: Potentiometer Control of a Servo's Position Recipe read a pot, move a servo.
30) *OUTPUT: Buzzer Alarms Using piezo buzzers for beeps, buzzing and tones.
32) **OUTPUT: Sound Generation with Arduino More advanced tones, sounds and music with speaker.
36) OUTPUT: Playing MP3 Audio Playing sounds/music w/the DFPlayer mini MP3 player module.
37) **INPUT: Light Sensor Detecting light intensity with a CdS photo-sensor.
39) INPUT: DHT-22 Relative Humidity/Temperature Sensor Detecting humidity & temperature via DHT sensor.
41) **INPUT: People Motion Sensor PIR motion sensor (senses motion up to 20ft away).
43) OUTPUT: 7 Segment LED Display w/TM1637 Module Displaying “digital clock” numbers with LEDs.
44) INPUT / OUTPUT: The LCD Display / Keypad shield Displaying text and taking keypress inputs.
51) COMM: Wired Web & Email Communication Using Wired Ethernet Networking for Web & Email.
59) COMM: ESP-01 Wireless Web & Email Communications Using WiFi networking for Web & Email.

Bold Italics = New

2

The Authors:

Eddie Sheffield, Thomas “Tweeks” Weeks, and Monta Elkins*

* - the guy who came up with the idea of the arduino cookbook concept... convinced us all it would work..
and then got his friends to do all the heavy lifting. Thanks Monta! ;)

3

4

M
o

ti
o

n
!

M
o

ti
o

n
!

S
o

u
n

d
S

o
u

n
d

L
ig

h
ts

L
ig

h
ts

M
o

to
rs

M
o

to
rs

B
u

tt
o

n
s

B
u

tt
o

n
s

S
o

u
n

d
S

o
u

n
d

K
n

o
b

s
K

n
o

b
s

L
ig

h
t

L
ig

h
t

L
ev

el
L

ev
el

5

Installing Arduino Software & Drivers Recipe needed on a fresh PC to talk to the Arduino

What:
This is the process that installs two things; the Arduino IDE or programming software that you use to
program and upload code to the Arduino, and the USB/serial port drivers (if needed on Mac and
Windows) to “talk” to the board over the USB interface.

NOTE: If you can not get this working (test it using the Blink Recipe), then you will not
be able to work with any other recipes in this cookbook.

How:
For Linux

•RedHat:
yum -y install arduino #(reqs: uisp avr-libc avr-gcc-c++ rxtx avrdude)

•Ubuntu:
$ sudo apt-get install arduino #(reqs uisp avr-libc gcc-avr avrdude librxtx-java)

•or for other installs or source based installs, go here:
http://playground.arduino.cc/Learning/Linux

For Mac/OSX:
•Download & Install Software from: http://arduino.cc/en/Guide/MacOSX#.UwGmXXWqYY0

For Windows:
•Download & install the software from: http://arduino.cc/en/Guide/Windows#.UwGlyHWqYY0

Fail:
Linux T-Shooting:

•check permissions of /dev/ttyUSB0 or /dev/ttyACM0 (user needs r/w or 777 access)
•May have to open port permissions to:

usermod -a -G uucp,dialout,lock $USER
 or may have to tempfix as root :

chmod 777 /dev/ttyUSB0

Windows T-Shooting:
•Make sure the special USB serial port drivers are installed

http://arduino.cc/en/Guide/UnoDriversWindowsXP#.UwGbtHWqYY0
•Check/fix COM port settings

Mac T-Shooting:
•Make sure the special USB serial port drivers are installed

http://arduino.cc/en/Guide/MacOSX#toc3
•check device permissions (similar to Linux)

6

http://arduino.cc/en/Guide/MacOSX#toc3
http://arduino.cc/en/Guide/UnoDriversWindowsXP#.UwGbtHWqYY0
http://arduino.cc/en/Guide/Windows#.UwGlyHWqYY0
http://arduino.cc/en/Guide/MacOSX#.UwGmXXWqYY0
http://playground.arduino.cc/Learning/Linux

TEST: LED (light) Blink Recipe test compiles and uploads code to blink a built in LED

What:
This process simply compiles and uploads code to
the Arduino for execution and blinks a light when it
succeeds. It's the easiest and fastest (fail fast) test
method to verify you can talk to your arduino.

There is a small LED (the light) connected to pin 13
of the Arduino. When that pin is 'high' (meaning
+5 volts for this Arduino clone), the LED lights.

NOTE: Arduino Software and driver should
be installed. (see Installing Arduino
Software and Drivers recipe).

How:
Select appropriate port
“Tools / Serial port” (see Fail section if the
Serial port menu is ghosted).

Select Arduino Uno.
“Tools / Board / Arduino Uno”.

Load blink onto the arduino, “File /
Examples / Basics / Blink” (see right).

Click on the upload icon to compile and
upload your program.

Several lights will blink during the upload,
then your program runs.

Look for the steady light blinking here.

Change both lines that say delay(1000); to
delay(100); and reupload the program.

Look for the light to blink faster. This shows
that the program changes you made are actually uploaded to the Arduino.

7

Loading the "blink" program in the Arduino IDE

Arduino Clone with power and "blink" light

 This blinking is done by the command digitalWrite(led, HIGH); which sends a “HIGH” 5volts to
the pin# in the variable “led”. When pin 13 is 'LOW' (meaning connected to ground) the LED (light)
is off. This is done by the command digitalWrite(led, LOW);

NOTE: Anything following “//” on a line is considered comments and ignored.

Fail:
• If you can not write to the arduino, get some error, or the serial port is ghosted:

• Verify the correct serial port
• Unplug Arduino and list serial ports, then plug up Arduino and list serial ports again.
• An additional serial port should appear.
• That new serial port should be the Arduino port.

OR
• Try plugging Arduino into a different port USB port

OR
• See the fail section of the “Installing Arduino Software & Drivers” recipe (port/permissions/

drivers)
OR

• Test with a different cable and Arduino board.
OR.. and only as a last resort in Linux...

• Try running the arduino program as root
(gets around all permission errors. Usually for testing only)

8

OUTPUT: Serial Monitor Recipe outputs text back to the PC. Great for live troubleshooting

What:
The serial output on the arduino can be used to echo or print real time program data back to the PC
over the serial USB port. This is very handy for troubleshooting or looking at run time values, states
and problem code.

How:
Upload and execute the following sketch on the Arduino.

void setup() {
 // initialize serial communications at 9600 bps:
 Serial.begin(9600);
}

void loop() {

 Serial.println("Hello World");

 // wait 1 second before the next loop
 delay(1000);
}

Then open the Serial Monitor by selection “Tools / Serial Monitor” or clicking its icon on the far right .
After which you should see the line “Hello World” appear repeatedly in the serial monitor window.

9

Serial.begin(9600); opens the serial port at on the Arduino and sets its speed to 9600 baud
The Serial.println() statement prints a line followed by a newline. When the Serial Monitor is
opened it watched for characters appearing on the laptop's serial (or USB serial) port and prints them in
the serial monitor window.

Fail:
• Be sure that you have the Serial.begin(9600); defined in the void setup () { code block.
• Look for RX and TX lights to blink on Arduino rapidly during upload.
• If program is running successfully look for the TX light to blink once per second, showing that

it is “trying” to transmitting data back to the laptop.
• Double check your Serial Monitor settings for both port and speed.

NOTE: you have to restart the Serial Monitor after each upload of a new program,
because the upload process uses the same serial port connection.

10

Breadboard or Protoboard Recipe breadboards are your pallet for creating temporary circuits

What:
How does a breadboard work?
Wire pins, pushed into the breadboard are connected together as shown in the schematic below. This
allows the quick building and testing of circuits.

 NOTE: Unplug the Arduino from the laptop (and any other power supply while making
and verifying connections).

Connection wire colors do not matter; but traditionally power (+) wires are red and ground (-) wires are
blue (or black). The (+) red breadboard row and (-) blue breadboard row gives you a common hookup
location on the breadboard for power (red) and ground (blue, GND). Using them also makes
troubleshooting a little easier.

Under the white plastic of the breadboard you
see that the holes are connected. This is what
makes working with a breadboard like legos
for electronics.

WARNING: Never connect or short +5v
power or (+) to GND or (-). This short will
probably blow your laptop's USB port and
damage other hardware. Not to mention
upsetting your instructor and being mocked by
your classmates

11

Average "breadboard" or "protoboard" (w/ horizontal +/- power rails)
which connects your circuit's 5V and GND with the Arduino'.

Protoboard schematic, showing the long +/5V and
-/GND power rails, and the short “rows” where you push

in your components. -Wikipedia

How:
To build a circuit, you normally:

1) start with a schematic diagram (left) which illustrates what is connected to what,
2) orient your components correctly (note the polarity (+ and -) on the LED light)
3) and connect them together on the breadboard:

Schematic diagram LED polarity Blank breadboard

 This is what the assembled circuit might look like:

-Batt to ground/-rial to -LED, +LED to Resistor to +rail to +Batt

Fail:
NEVER connect + to – directly. This will damage the breadboard, the wires, the battery and possibly
damage your Arduino and even your USB port or PC!

12

INPUT: Push Button the most simple way of taking input

What:
Other than using a raw wire, the momentary push button
is the most simple form of input there is. It can be wired
“HIGH” (to result in a logical 1, or True) or wired
“LOW” to result in a logical 0, or false) condition when
using the digitalRead(pin) command.

How:
Most people think you can just hook it up to an input and wire it to Vcc
(5v) or ground and it just works. Due to digital logic “floating inputs”, it's
not quite that simple, and as such you usually want at least a single 10k resistor
to pull the un-pushed state of he button HIGH or LOW.

If you want a logical “1” or True state when you push the button, then you should tie the un-pushed
side of the switch the GND (through a resistor) so
that the un-pushed logic level floats low. If you do
not do this, then it can float high or low and create
problems for your program.

Always disconnect the Arduino from the USB &
power before connecting anything new. Wire it as
seen here so that un-pushed, ping 3 “sees” the logic
LOW (or GND) when the button is left unpressed,
but as soon as the button is pressed, the pin 3 sees
the Vcc (5V) or logic HIGH.

WARNING: Be very careful that you do not wire the switch
directly across the 5V and GND or skip using the resistor.
This will short the Arduino's 5V to GND which will make
the switch very hot, possibly smoke/melt the breadboard,
and damage the Arduino. If unsure of your connections,
always get a TA- helper to look over your work!

13

Mechanical and electrical
diagrams for a push button switch

Here's the code to make it work. We're just blinking LED 13 using an if() conditional to show the state
of the button.

const int buttonPin = 3;
const int ledPin = 13;

void setup() {
 // initialize serial communication at 9600 bits per second:
 Serial.begin(9600);
 pinMode(buttonPin, INPUT);
 pinMode(ledPin, OUTPUT);
}

// the loop routine runs over and over again forever:
void loop() {

 if (digitalRead(buttonPin)) { // If button push is true
 digitalWrite(ledPin, HIGH); // light LED
 Serial.println("Button Pushed!"); // and print on serial port
 delay(10);
 }
 else {
 digitalWrite(ledPin, LOW); // otherwise, turn off LED
 delay(1);
 }

 delay(10); // delay in between reads for stability
}

Once you compile and upload the code, be sure to press the serial monitor icon to pull up the real
time serial data coming back from the Arduino so you can see the report of the push button state.
However, the LED should also light, indicating the input state change.

Fail:
Nothing happens when you press the button:

• If the button seems to do nothing, make sure you have it oriented correctly. If you wire it 90
degrees off, it will act like the button is constantly pushed and the state will not change.

• You have wired the resistor, 5V or GND wrong.
• Your wiring and buttonPin setting do not match.
• Bad coding.

The button or circuit gets hot or smokes:
• STOP! Unplug everything and have an instructor come over and look at your wiring. You have

probably shorted 5V and GND. Very bad juju.

14

INPUT: Potentiometer Recipe a knob or “pot” is a adjustable resistor for creating a variable voltage

What:
The potentiometer is a just a variable resistor. In most implementations here you
will see it used as a knob that will give you a variable voltage (e.g. 0 – 5 volts)
to control things hooked to the arduino. The outer two pins, left(1) and right(3),
get hooked to ground (GND) and +5 volts, and in this configuration the middle
pin (2) will provide a 0 - 5 volt range that can in turn be applied to an arduino
analog input such as A0. If operated like this, the arduino will read that value in
(when instructed) and convert any analog voltage (at that moment) to a number
between 0 - 1023 through a process called analog to digital conversion, much
like an MP3 recorder does for audio.

How:
Firmly insert the potentiometer (also called a “pot”) into the
breadboard. Connect the leftmost side to ground (GND or
-) and the rightmost side to power (+5v or +, or +3.3v if
configured for 3.3v operation). The middle connector is the
output of the pot in this case. Connect the middle wiper
arm to an analog in pin on the Arduino. The A0 input is
good.

Verify the circuit by reading and printing the pot value.

void setup() {
 // initialize serial link at 9600 bps:
 Serial.begin(9600);
}

void loop() {
 int sensorValue0;
 sensorValue0 = analogRead(A0); // read the pot input
 Serial.print ("Pot 0 value="); // print it
 Serial.println(sensorValue0);

 // wait 1 second before the next loop
 delay(1000);
}

Turn the pot left and right, the printed value should go from (near) 0 to (near) 1023

Fail:
• Verify the pot is seated firmly in the protoboard
• Verify 5 volts across the pot's outer pins with a multi-meter
• Are you reading the input value into a variable?
• Are you printing the correct variable for testing?

Discuss 'deadband' and “print on change”

15

Mechanical and schematic
diagrams for a potentiometer

BUILD: LED Chase Light Recipe wire up and blink a chase light circuit

What:
The goal of this recipe is to learn how to hook up multiple LEDs and resistors to the arduino in order
that make them strobe back and forth to form a chase light. Add in an optional potentiometer and you
can control things like LED chase speed or LED brightness.

You will need:
• a breadboard
• 6-7 LEDs
• a 330 ohm resistor
• 5 or 10k potentiometer (optional)

How:
Before hooking anything up, first note that the LED has a longer leg
(positive) and a short leg (negative). Unlike a light bulb, LED lights
have + and – polarity and need to be correctly connected.

WARNING: If you get the polarity of an LED
hooked up backwards it simply won't light. However,
get the polarity right but without a current limiting
resistor and you can blow it. Please don't blow our
LEDs or we'll call you “smokey”. :^)

Connect Single LED + Resistor:
First, start off by hooking up just one LED and current limiting resistor and get that working on the
arduino's digital output pin 12. To do this:

• Connect the GND on the Arduino to the 330 ohm resistor and then the resistor down to the
breadboard's - or blue row. This is blue row is where you will connect the - side of the LED.

NOTE: Leave +5V disconnected from the breadboard for this recipe. We're using the +
(red) row for something else in this circuit.

• Connect LED's positive (long) leg to digital pin 12
• Connect LED's negative (short) leg to - blue row of the breadboard
• Connect other side of the resistor to GND (blue row) on breadboard
• Load the “blink” program and change digitalWrite(13); to pin "12"
• Upload & run

16

Chase Lights:

After you have one LED up and running, hook up the
remaining 4-5 LEDs the same way to pins 8, 9, 10 and 11,
all back through the same resistor through the blue(-) power
strip. See photo (right).
Hook up:

• LED positive (long) legs to digital pins 8, 9, 10, 11, 12
(top “DIGITAL” input/output section)

• LED negative (short) legs to the resistor's common
blue row

• Modify program void setup() section to configure
LED pins 8-12 as outputs

• Compile and upload

TEST: Test to see if you can light up each LED with the digitalWrite() command

Use Potentiometer (knob) Value For Timing:
• Add potentiometer to breadboard to control variable chase light speed
• Wire pot leg pin 1 (left pin) to ground (GND or 0v) on arduino
• Wire pot leg pin 2 (middle) to A0 or "Analog0" (on “ANALOG IN” header (bottom right))
• Wire pot leg pin 3 (right pin) to +5v on arduino
• Use "analogRead(0);" function read or sample the pot value (0-5V maps to value 0 -1023)
• Replace blink's

delay(1000);

in milli-seconds with:
delay(analogRead(0));

to use the pot read 0-1023 value as the new delay value between LED flashes.

• Compile, upload and run code
• Twist knob to adjust chase light speed (delay)

Try This: You can either read the analogRead(0) just once at the beginning of your LED
flashes (using it for each LED on/off cycle), or re-read the pot for each LED flash cycle.
Try it both ways. Observe the difference.

Try This: See data from the arduino on your PC in real time with
Serial.print(analogRead(0)); to see your pot value in the serial console

Fail:
• LED is not lighting: Check the polarity or try new LED (another “smokey” may have used it ;)
• Pot does nothing: Make sure you have the pot's pins hooked up to GND and +5v correctly

or that you're reading the correct analog input. If problems, then Serial.println()
 the value of the pot to verify it's working as expected.

17

CONTROL: Servo Recipe a servo is a digitally driven (PMW) motor that you can control the angul of.

What:
Connect and control a servo motor (a digitally, position controlled motor) with the Arduino with a
potentiometer (knob). You will read the value of the pot, and based on that value, change the position
of the servo motor using one of the arduino's PWM (pulse width modulation) outputs.

How:
Use a 3 pin header to connect the servo to the protoboard.

• Connect the brown wire on the servo to ground.
• Connect the red wire on the servo to the Vin pin on the Arduino.
• Connect the orange wire to pin 9 on the Arduino.

WARNING: Placing a 330 ohm buffering resistor on the servo
input line (orange) is a good idea to help protect the circuit in case of
mis-wiring. “Only you can prevent arduino fires Smokey.”

Use the following code to test the servo.

#include <Servo.h>
// create a servo object
 Servo servo0;

void setup() {
 servo0.attach(9); // servo is attached to pin 9
}

void loop() {

 servo0.write(60); // tell servo to go to the 60 degree position
 delay(1000); // wait 1 second
 servo0.write(120); // tell servo to go to the 120 degree position
 delay(1000); // wait 1 second

}

Look for the preceding code to move the servo
to the “60 degree” position, wait 1 second,
then move the servo to the “120 degree”
position. The actual movement degree may
vary somewhat depending on the servo. The
initial position of the plastic servo arm that
presses onto the servo toothed shaft may be
changed by gently pulling it up, off the servo,
turning it and then pressing it back down, re-
engaging the “teeth” in a different rotational
position.

18

How:
The position of a servo is set by sending
it a 1 – 2 millisecond pulse. A 1ms pulse
represents approximately 0 degrees of
servo rotation. A 1.5 ms pulse represents
approximately 90 degrees. A 2 ms pulse
represents a servo position of 180
degrees.

This pulse should be sent every 20 ms or
so. The exact timing between pulses is
not critical.

While we could easily write code to
pulse the servo control the proper time
(between 1 and 2 ms) every 20 ms, the
Servo library used above takes care of
that for us and can control multiple
servos simultaneously.

NOTE: Servo range may vary; not all servos have a full 180 degree range.

Fail:
Unplug servo power line an plug in back in. Listen for servo to make a small move if power is
connected properly.

Servo's can consume more power than available from the Arduino and from laptop USB port. Try
connecting the external battery pack for additional servo power.

Check that the values printed to the Serial Monitor make see what's going on as the pot is moved.

Make sure the brown and red servo wires go to to GND and +5v respectively (call instructor if unsure).

Make sure the orange wire is connected to the correct PWM pin on the Arduino, especially if there is
more than one servo connected. Change to servo control pin defined in the software if necessary.

If the electrical connections are suspect, try replacing the 3 pin headers with 3 jumper wires

19

Illustration 1: Source: seattlerobotics.org

CONTROL: Robot DC Motor Control Using the KeyesL298 H-Bridge motor controller w/DC motors.

What:
Connect the left and right motors to the motor controller. Then to adjust the speed of each DC motor,
you program the arduino to provide opposite HIGH/LOW direction signals into the motor controller's
INput1/INput2 direction signals, then together with an EnableA (for motor-A for example) the A motor
will begin spinning in one direction. Invert the IN1/IN2 signals to LOW/HIGH + ENA(HIGH), and it
spins in the opposite direction. To control the motor speed, use a ~PWM output pin on the arduino and
send it a PWM signal between 0-255 (0 off, 255 full speed) using analogWrite(100) (for example) to
get a medium-slow spin.

How:
If you're using a two motor robot, (see photo) hook up
motor-A to the L298's top motor terminals and the left
motor to the motor-B terminals.

 M.Board Function Sensor
Shield

Jumper On/Off

ENA motor-a enable D6 CSB ON

IN1 motor-a + D7 CSA ON

IN2 motor-a - D5 UR1(pullup) OFF

IN3 motor-b + D4 UR2(pullup) OFF

IN4 motor-b - D2 UR3(pullup) OFF

ENB motor-b enable D3 UR4(pullup) OFF

GND Ground GND 5V_EN OFF

+5V Logic Supply VCC

The polarity of the motors (motor-a +, motor-a -) doesn't even really matter as the opposing motor will
probably be turned around (180 degrees), so for your application you simply change the HIGH/LOW
signals you send the IN1 and IN2 board inputs and that toggles the motor direction. Here's the example
code for driving the motors:

#include <Arduino.h>

// Let's Code Blacksburg
// Motor Drive test #1 code
// (version .1 -ME)

// Motor controller signals and the arduino pin assignments
const int ENB=3; // motor-b enable PD3
const int IN4=2; // motor-b - PD2
const int IN3=4; // motor-b + PD4

const int IN2=5; // motor-a - PD5
const int IN1=7; // motor-a + PD7
const int ENA=6; // motor-a enable PD6

20

void setup()
{
// lcbb motor CONTROL test code.
 // Motor A setup
 pinMode (ENA,OUTPUT); //motor A enable
 pinMode (IN2,OUTPUT); //motor A wire 1 polarity
 pinMode (IN1,OUTPUT); //motor A wire 2 polarity

 // Motor B setup
 pinMode (ENB,OUTPUT); //motor B enable
 pinMode (IN4,OUTPUT); //motor B wire 1 polarity
 pinMode (IN3,OUTPUT); //motor B wire 2 polarity

 pinMode (13,OUTPUT); // LED for testing

 // Set polarity for motor A
 digitalWrite (IN4,LOW);
 digitalWrite (IN3,HIGH);

 // Set polarity for motor B
 digitalWrite (IN2,LOW);
 digitalWrite (IN1,HIGH);

}

void loop()
{
 int motorSpeed=255; // Any PWM range from 0-255

 digitalWrite(13,HIGH); // Turn on LED
 analogWrite(ENA,255); // set Motor A speed 100%
 analogWrite(ENB,255); // set Motor B speed 100%

 delay(3000);

 digitalWrite(13,LOW); // Turn off LED
 analogWrite(ENA,0); // set Motor A speed 0%
 analogWrite(ENB,0); // set Motor B speed 0%

 delay(3000);
}

If both of your motors are not turning on and off, you either have coding/typo problem or a hardware
problem and need to see the Fail: section. If your motors are both turning on and off correctly, then try
commenting out the last two analogWrite lines like this:

 //analogWrite(ENA,0); // set Motor A speed 0%
 //analogWrite(ENB,0); // set Motor B speed 0%

so your motors will be always on. Next flip your bot over, plug in the batteries to the arduino board and
see if your bot goes in a straight line.

Q: Does your bot go in a solid straight line (with the code above)? A:

21

Not only can you vary the speed of each motor, but each motor has a unique, minimum usable speed
(PWM) value where it begins to turn – under which it's really not usable. In fact, it's best to put the
motors under slight load (touch them with your fingers or let it push the bot) and you'll see that
minimum speed is even higher under load than at no load.

Flip your bot on it's back so you can watch the wheels and repalce your loop() code block with the
code below, and using the serial console (w/ the Serial.print(motorspeed) below), see what
your minimum, loaded, motor speed is (the minimum PWM speed at which both wheels can move at
roughly the same speed):

... (setup and other code) ...

void loop()
{
 int motorSpeed=0; // starting speed
 int minSpeed=motorSpeed; // minimum speed -\
 int maxSpeed=255; // maximum, adjust -these to find what' best

 while (motorSpeed < maxSpeed) {
 motorRight(motorSpeed);
 motorLeft(motorSpeed);
 Serial.println(motorSpeed); // Print speed over serial
 motorSpeed+=2; // increment the motor speed by 2
 delay (100);
 }

 while (motorSpeed > minSpeed) {
 motorRight(motorSpeed);
 motorLeft(motorSpeed);
 motorSpeed-=2; // decrement the motor speed by 2
 Serial.println(motorSpeed); // Print speed over serial
 delay (100);
 }
}

void motorRight(int speed)
{
 // Control the speed of Right motor-
 analogWrite(ENA,speed); // Send a PWM speed control to Right motorn
 // might have to swap with PD3 if your robot is wired differently than
mine
}

void motorLeft(int speed)
{
 //Control the speed of motorB
 analogWrite(ENB,speed); // Send a PWM speed control to Left Motor
}

Looking at the serial console's output...

22

Q: What was your minimum usable motor speed (for both motors under load?) A: _

Now set your minSpeed for that value, re-upload and see roughly where your bot travels in a straight
line and make that value your new minSpeed and decrease your max speed to 2 higher than minSpeed
and see if you can keep your bot running straight.

Q: What was your best straight line speed? A:

Fail:
One or both motors are not spinning at all.

• Code: Typo in the ENA, ENB or IN1/2/3/4 pin assignments
• Hardware: Double check your wiring (motor board to Arduino/Shield)
• Hardware: Wiring of the motors to the motor board, the power or the wires going to the motors

 (have an instructor use a meter to check you motor resistance, motor wire/solder)
• Hardware: Your batteries are low (they should each measure between 3.7 – 4.2v)

 (have an instructor use a meter to check your voltage levels)

23

INPUT: Ultrasonic “Eyes” Range Sensor Using an ultrasonic ping sensor to detect object distance.

What:
The ultrasonic ping sensor is simply a digital module
that allows you to send out a “ping” in the form of a
microsecond sound burst, listen for the return echo and
given the approximate speed of sound in air (using the
delay between the ping and the echo back) calculate
the distance to the object. Some ping sensors have a
single ping/echo pin that you both send on and listen
on (output + input), while others (such as the one
we're using here) have one pin dedicated to the ping
(called the “trigger”) and one pin dedicated to
receiving the echo (called “echo”). There is no analog signal processing that needs to be done as this is
all handled by the module, so we're just dealing with a nice clean, processed digital I/O signals and
microsecond timing. However, the microsecond timing is very critical, and some cheaper sensors can
not resolve distances much over a foot out.

How:
Hook up the ping sensor to any two digital I/O
pins free on your arduino. Here we're using
pins 12 (trigger) and 13 (echo). Be sure the
Vcc (+5V) and GND are correctly wired
before applying power.

No load up the build in example code from
Examples / Sensors / Ping. This example code
is made for the three pin Parallax version (with
just one pin for trigger & echo), however you
can easily modify it to work as seen below:

#include <Arduino.h>

const int triggerPin = 12;
const int echoPin = 13;

void setup() {
 Serial.begin(9600); // For outputting distance data
 pinMode(echoPin, INPUT); // Make echoPin an INPUT
 pinMode(triggerPin, OUTPUT); // Make the triggerPin an OUTPUT
}

void loop()
{
 // establish variables for duration of the ping,
 // and the distance result in inches:
 long duration, inches;

24

How a ping sensor detects distance.

NOTE: If you have the US-100 version of this module, remove the
jumper from the rear to make it use pulses instead of serial data.

 // The PING))) is triggered by a HIGH pulse of 2 or more microseconds.
 // Give a short LOW pulse beforehand to ensure a clean HIGH pulse:
 pinMode(triggerPin, OUTPUT);
 digitalWrite(triggerPin, LOW);
 delayMicroseconds(2);
 digitalWrite(triggerPin, HIGH);
 delayMicroseconds(5);
 digitalWrite(triggerPin, LOW);

 // A HIGH
 // pulse whose duration is the time (in microseconds) from the sending
 // of the ping to the reception of its echo off of an object.
 duration = pulseIn(echoPin, HIGH);

 // convert the return echo time into a distance
 inches = duration / 74 / 2;

 Serial.print(inches); // print it out to the serial port.
 Serial.println("in, ");

 delay(100);
}

Git code: https://github.com/LetsCodeBlacksburg/arduino-robotics/tree/master/
LCBB_ping_trigger_echo_sensor_simple

After compiling and running this, then click on the serial monitor icon , you should get a stream of

distances like this:

10in,
11in,
7in,
6in,
4in,
3in,
2in,
1in,
1in,
1in,
1in,
2in,

Think about at what distances you want to do things like (if doing a robot) slow your robot, stop your
robot, or change directions.

Fail:
No distance readings can result from:

• bad wiring of power or trigger / echo pins
• not defining triggerPin as output and echoPin as input (or using them correctly)
• code typos

25

https://github.com/LetsCodeBlacksburg/arduino-robotics/tree/master/LCBB_ping_trigger_echo_sensor_simple
https://github.com/LetsCodeBlacksburg/arduino-robotics/tree/master/LCBB_ping_trigger_echo_sensor_simple

INPUT: Line Following IR Sensor (Using a three-element infrared line sensor.)

What:
Line following robots need a way of detecting light vs dark lines on the floor. This
three element digital sensor (with potentiometer threshold setting) is a popular low
cost way of creating line following robots.

How:
Each line follower sensor has a Voltage pin (V), and Ground pin (G) and a Signal pin
(S). One way to connect a three IR line follower circuits is by using the often
unused analog inputs A0, A1 and A2 for the three signal lines from the sensors. The
sensor's G & V pins can be connected to any ground and Vcc voltage sources. If
using the Sensor Shield, these pins are usually free on any unused, three pin digital I/
O connectors. The point here is to use the G & V pins on unused digital I/O
connectors, but route the S (signal) lines over to an analog inputs, not the unused
digital I/O S pin.

NOTE: The code below uses the serial monitor to watch all three modules. The serial
montior is a great way of watching the state of a lot of things at the same time like this.

Here's the example code for testing all three sensors while monitoring them over the
serial monitor :

#include <Arduino.h>

// Let's Code Blacksburg
// IR sensor test code
// (version .2 -tweeks)
// This code reads the three IR line follower sensors
// (Left, Middle and Right) on analog pins A0, A1
// and A2, and outputs L for black line or _ for
// white surface (no line) on the serial monitor.

int sensorLeft=0;
int sensorMiddle=0;
int sensorRight=0;

void setup()
{
 Serial.begin(9600); // for outputting t-shooting codes
}

void loop()
{
 // Sensor readings give you a 1 if it sees the black line
 // and a 0 if it sees white.

 sensorLeft=digitalRead(A0); // Left uses analog A0
 sensorMiddle=digitalRead(A1); // Middle uses analog A1
 sensorRight=digitalRead(A2); // Right uses analog A2

26

Three of these make a
great line follower

The wiring of the three
element IR sensor

 if (sensorLeft==1) {
 Serial.print(" L ");
 }
 else {
 Serial.print(" _ ");
 }

 if (sensorMiddle==1) {
 Serial.print(" L ");
 }
 else {
 Serial.print(" _ ");
 }

 if (sensorRight==1) {
 Serial.println(" L ");
 }
 else {
 Serial.println(" _ ");
 }

}

The latest version of this code can be found here:
https://github.com/LetsCodeBlacksburg/arduino-robotics/blob/master/
LCBB_bot_tri_ir_line_sensor_simple/LCBB_bot_tri_ir_line_sensor_simple.ino

To test this, make a “testing card” out of a 3x5 card and black electrical tape. Place the bot on it's back
and move the tape-card back and forth in front of the sensors.

Here's the example output of the serial monitor from this test code as you move the tape-card across the
sensors, along with some comments I added indicating what you should tell your robot (motors) to do:

 _ _ L Go right
 _ L L Go right a little
 _ L L Go right a little
 _ L L Go right a little
 _ L _ Go straight
 _ L _ Go straight
 L L _ Go left a little
 L _ _ Go left
 L _ _ Go left
 _ _ _ Keep going the way you were before losing the line

Fail:
Common failure modes of these sensors are:

• Hardware: Hooking to the wrong pins (power or signal lines)
• Hardware: The underside of the board is shorting out on a metal surface (very bad)
• Software: Typos using analog reads instead of digitalRead(A0) (for example)

27

https://github.com/LetsCodeBlacksburg/arduino-robotics/blob/master/LCBB_bot_tri_ir_line_sensor_simple/LCBB_bot_tri_ir_line_sensor_simple.ino
https://github.com/LetsCodeBlacksburg/arduino-robotics/blob/master/LCBB_bot_tri_ir_line_sensor_simple/LCBB_bot_tri_ir_line_sensor_simple.ino

CONTROL: Potentiometer Control of a Servo's Position Recipe read a pot, move a servo.

What:
A potentiometer is just a variable resistor in the form of a knob. In order to use a potentiometer to
control a servo:

• Follow the the potentiometer recipe, connecting the pot output to the Arduino pin A0 (analog 0).
• Follow the Servo recipe, connecting the servo input wire to Pin 9 of the Arduino.
• Use the program below

How:
Here is a sample of how it could be wired up.

After testing the Pot and servo
separately use the following code to
test Servo control by a
potentiometer.

Turning the pot left and right
should cause a corresponding
rotation in the servo.

The servo may move “faster” or
“slower” than the pot depending on
the map in the code below.

(We are using the values 30 to 150
for the degree settings, because
some servo's have difficulties at the
extremes of their movement.)

#include <Servo.h> // servo library
// create a servo object
 Servo servo0;

void setup() {
 // initialize serial communications at 9600 bps:
 Serial.begin(9600);
 servo0.attach(9); // servo is attached to pin 9
}

void loop() {
 int servo0Setting=90; // for the servo position later

 int sensorValue0; // Read Pot value

 sensorValue0 = analogRead(A0);
 Serial.print ("Pot 0 value=");
 Serial.println(sensorValue0);

28

 // Map the pot reading to the servo degree setting
 // we'll use 30 to 150 degrees for the servo

 servo0Setting=map(sensorValue0,0,1023,30,150);
 Serial.print ("Servo 0 setting");
 Serial.println (servo0Setting);

 // Set Servo position
 servo0.write(servo0Setting); // tell servo to go to the designated
position

}

Try This: You can change the direction of the servo to potentiometer mapping by swapping the
pot input values in the map statement.
e.g. change this:

servo0Setting=map(sensorValue0, 0, 1023, 30, 150);
to this:
servo0Setting=map(sensorValue0, 1023, 0, 30, 150);

Of course different pins for the pot and servo may be used, but the test program will have to be
modified to match.

Fail:

29

OUTPUT: Buzzer Alarms Using passive piezo buzzers for beeps, buzzing and tones.

What:
Most of the time you're making sounds with an Arduino, all you need is beeps and
buzzing noises. A passive piezo buzzer is perfect for this purpose. They can look
like almost any of these devices on the right, but they're mostly the same in that,
unlike speakers, they are high resistance and don't need an amplifier, high power
or transistors to drive the device so they are very simple to implement.

One thing to watch out for is the use of active vs passive buzzers. Passive buzzers can be
pulsed (with a signal from the Arduino) with almost any frequency (tone), very low or very
high. Where active buzzers are “programmed” to only play one freequency/tone, usually
around middle-C (or 1,000Hz). If you use a passive buzzer and send it a low tone (100Hz)
you'll get a nice low tone sound. Send the same low tone to an active buzzer and there's no guarantee
what you'll get, but it will probably sound like a mix between your tone and the preprogrammed tone..
kind of muddy and not clean sounding.

The gold device (right) is a raw piezo element and is guaranteed to be passive, where devices with the
black casings (top) can be either active or passive and there's no way to tell which it is visually (if you
didn't buy it). The down side to using gold/raw type of piezo element is that they cancel out some of
their volume by not being encased in a nice sound directing casing (those black plastic cases).

The programs in this recipe are best used on passive, enclosed (black) piezo devices. But even still, if
your tones sound dirty or garbled, chances are you have an active buzzer that does best with simple on/
off signals instead of tone signals.

How:
Hooking up piezo buzzers is fairly simple. For a

two wire buzzer (not shown here) you simply hook the
buzzer's black wire to the Arduino's Gnd(G) and the red
wire to one of the arduino's digital output pins. For the
three-wire module variety (right), you simply hook the
G/- pin goes to your Arduino's Gnd(G), the module's V/
+ goes to Vcc/5v, and the Signal(S) pin goes to your
preferred arduino digital output pin.

The code for making a single tone is as simple as:
(in setup)

pinMode(buzzerPin, OUTPUT);
tone(buzzerPin, 3000, 500);

Which sends a single 3000Hz tone, on the buzzerPin (whatever
you set that value to) for 500ms (or ½ a second).

30

No breadboard is needed if your arduino
features SVG sensor headers!

Here's a little more advanced, and very useful recipe that you can use in many of your projects to
generate human feedback on your projects:

const int buzzerPin = 3; // Sound Buzzer on pin#

void setup() {
 pinMode(buzzerPin, OUTPUT);
 digitalWrite(buzzerPin, HIGH); // Keeps buzzer from overheating and

// making background noises.
}

//// LOOP ////
void loop() {
 buzzer("chirp"); delay(5000);
 buzzer("success"); delay(5000);
 buzzer("fail"); delay(5000);
 buzzer("alarm"); buzzer("alarm"); delay(5000);
}

//// buzzer("success" || "fail" || "chirp" || "alarm") ////
void buzzer(char mode[]){
 if(mode == "success"){
 tone(buzzerPin, 2000); delay(50); noTone(buzzerPin); delay(50);
 tone(buzzerPin, 2000); delay(50); noTone(buzzerPin);
 }

 if(mode == "fail"){
 tone(buzzerPin, 400, 400); delay(400);
 tone(buzzerPin, 100, 1500); delay(1500);
 noTone(buzzerPin);
 }

 if(mode == "chirp"){
 tone(buzzerPin, 3000); delay(50); noTone(buzzerPin);
 }

 if(mode == "alarm"){
 for (int x=0 ; x<1 ; x++){
 tone(buzzerPin, 1000, 1000); delay(1000);
 tone(buzzerPin, 800, 1000); delay(1000);
 noTone(buzzerPin);
 }
 }
}

Fail:
• The most common problem on the module device is hooking the pins up wrong.
• If a buzzer module sound sounds “muddy” or like two tones, you probably have an active (fixed

frequency) version, which is not compatible with the tone() command.
• If the device gets hot to the touch, invert the digitalWrite(buzzerPin, HIGH) to LOW in

setup, and use noTone(buzzerPin)after playing your tones.

31

OUTPUT: Sound Generation with Arduino making tones, sounds and music with speaker

What:
Sounds are generated by feeding a changing voltage into
a speaker. How often the voltage changes per second is
the frequency of the sound. A “pure” sound would be a
signal that changes smoothly over time – like a sine wave.

Sine waves can be hard to generate digitally. But for
making basic tones, a square waves are much easier to
generate, require no real additional hardware and often
works for most uses.

How:
Parts Needed:

• Speaker (The larger one in the kit, or a 5v
buzzer.)

• Red and black wires.

Assembly:
• Connect the black wire from the black side of the speaker connector to the ground hole on the

Arduino.
• Connect the red wire from the red side of the speaker connector to DIGITAL pin 5.

NOTE: In the LCBB arduino kit, the wires are a tight fit into the speaker
connector. It may push the speaker wire out of the connector. So try to hold
the speaker wire and connector while pushing in the other wires, or use the
small, black 5v buzzer. If using a buzzer, be sure to check out the
OUTPUT: Buzzer Alarms recipe.

The Code:

int soundOut = 5; // Sound output pin
int del = 2; // This determines how long the signal stays

// HIGH or LOW in milliseconds

void setup()
{
 pinMode(soundOut, OUTPUT);
}

void loop()
{
 digitalWrite(soundOut, HIGH);
 delay(del);
 digitalWrite(soundOut, LOW);
 delay(del);
}

32

Pretty simple, right? The delay is in
milliseconds. So each pass through the
loop is a complete “cycle” and bit more
than 4 milliseconds total. There is some
overhead to executing the various
statements so that is why it comes out
more than 4, but only by a little and it's
close enough for us. That makes the
frequency about 250 Hertz. That's close
to a “B” an octave below middle “C” on
a piano. Here's a chart for reference:

So let's modify it a bit to change tones back and forth – kind of like a European siren.

int soundOut = 5; // Sound output pin
int del = 1; // Delay or duration of HIGH and LOW pulses
 // Longer delay times = lower frequency

// So shorter delay 1 = high tone, longer delay 2 = low tone
int count = 0; // Counter to control how long to play a high or low tone

void setup()
{
 pinMode(soundOut, OUTPUT);
}

void loop()
{
 digitalWrite(soundOut, HIGH);
 delay(del);

 digitalWrite(soundOut, LOW);
 delay(del);

 // Since del is the square wave's pulse time (inverse of frequency)
 // and count is a total amount of time, add del to count so we
 // always wait the same amount of time
 count += del;

 // If the desired amount of time as been reached, reset the
 // count and toggle the frequency (1 to 2)
 if(count > 500) // if past tone count (try 100, 25, 10, 4, 3, 2, 1 !)
 {
 count = 0; // reset the duration counter
 if(del == 1) // a == compares two things
 {
 del = 2; // toggles the tone
 } else {
 del = 1; // a single = sets a variable
 }
 }
}

33

Well, that was getting complicated! And if we want our Arduino to do anything else at the same time,
it's going to get pretty nuts!

But remember the PWM info from the servos recipe? That's a square wave too! So lets try that.

int soundOut = 5; // Sound output pin

void setup()
{
 pinMode(soundOut, OUTPUT);

 // Doing this here shows that we keep generating sound
 // Even after setup is complete and the loop can do
 // other things
 analogWrite(soundOut, 128);
}

void loop()
{
}

That's handy! See what happens if you change the analogWrite value.

But there's a limitation here. The PWM signal the Arduino generates is 490Hz. So you can't change the
frequency.

Using tone() for Sound
So here's a better trick that greatly simplifies everything above...

int soundOut = 5; // Sound output pin

void setup()
{
 pinMode(soundOut, OUTPUT);
}

void loop()
{
 tone(soundOut, 440); // Surprise! Arduino can play sounds directly!
}

Wow, now that's handy! It's similar to the PWM technique in that the sound keeps playing by itself (try
moving the “tone” command to the setup instead of loop). In fact, internally it uses the same hardware.
But instead of a single frequency that varies the pulse width, you tell it the frequency and it's always a
50-50 high/low division. You can also add a third value for milliseconds (1000ms = 1 second) so it will
only play for a given length of time. Pretty slick! Here's a tone chart.

Try This: Write twinkle twinkle little star! (try tone duration of 400ms and delay between notes
of 500ms) and the chart above (starting in key of C).

34

So why even bother with other sound techniques? All technology has pros and cons. Inthis case, there
are some limitations with the “tone” command. For one thing, it can only play one tone at a time. So
even if you have multiple speakers hooked up, you can't sent sound to all of them at once. Another
problem is that since it uses some of the same hardware inside the Arduino, you can't use PWM on pins
3 or 11 at the same time you're generating tones. If these aren't a problem, and the sound quality is good
enough, use tone.

If you're interested in these advanced techniques, check out “Advanced Arduino Sound Synthesis” in
“Make:” magazine volume 35, page 80.

Fail:

35

OUTPUT: Playing MP3 Audio Playing sounds/music w/the DFPlayer mini MP3 player module.

What:
Most of the time you're making sounds with an Arduino, all you need is beeps
and buzzing noises. But if you need to play very high quality MP3 or .WAV
audio files, then you need the DFPLayer, mini mp3 player with integrated audio
amplifier. Although the DFPlayer module can function completely separately
from an arduino (all music is stored on the removable microSD card), using the
arduino with the mp3 module is nice in that it allows you to also do other things
such as take button presses and send play/pause commands via the software
serial driver, or even display track# information via an LCD or LED display.

How:
The library driver you need to install is the “DFRobotDFPlayerMini” + the SoftwareSerial library.
Find and install these libraries through the Arduino IDE using its Sketch / Include Library / Manage
Libraries interface. For example, just search for “DFPlayer” there and install the
“DFRobotDFPlayerMini” driver, then the same for the SoftwareSerial library, and you'll soon be able
to program your aruino to send MP3 commands via the software serial lines.

NOTE: This recipe was written without a breadboard. Where you see the two 1k ohm
resistors (below left of the speaker), you'll probably want to mount those on a
breadboard and wire from the arduino to the resistors to the DFPlayer TX/RX serial
lines.

!! WARNING !! Not using the serial data 1k resistors will likely blow your
MP3 player module. Please don't let the magic smoke out of our our Arduino kits. ;)

You'll notice that this wiring diagram, or schematic,
has a single sky blue wire running from Arduino pin
12 to the MP3 Player's active-low “_BUSY” line.
This is so that we can (in code) monitor the high/low
player-state of this line to know when the player is
done playing (goes high), instead of bothering the
MP3 player over it's serial line while playing music
(which can cause some skipping and audio popping).
We are also (optionally) taking one of the speaker
outputs (light green line) and plugging it into the
Arduino's analog input A1, which will let us monitor
for audio (if we wish).

The code for this project is very long and so is not being fully provided in this cookbook at this time,
but a variation of it can be copied and adjusted from a previous “Talking Skull” workshop that used an
almost identical configuration. For that code, see the “LCBB_Talking-Skull_4_dfplayer-test” code
located here in this github repo:
https://github.com/LetsCodeBlacksburg/arduino-talking-skull

36

https://github.com/LetsCodeBlacksburg/arduino-talking-skull

INPUT: Light Sensor detecting light intensity with a CdS photo-sensor

What:
A light sensing cell or photo-resistor or Cadmium Sulfide (CdS) cell turns
light into a variable resistance. Usually dark = high resistance and high light
= low resistance. In simple terms it is a bit like a potentiometer or volume
knob for light.

Just like a variable pot resistor, it can be used as an input to change
programming values for time delays, LED light intensity, or even motor movement or
sound!

How:
Hooking up a raw light sensor is simple but
does require an additional 10k ohm resistor
wired in series (between +5V and GND on the
breadboard). Your analog input (A5) gets its
value from the voltage measurement from
where the sensor and resistor meet on the
breadboard. In this configuration (right), you
can expect a data value of around 102 (of
1023, or roughly 0.5v) with a light shining on
the sensor, around 716 (3.5v) for ambient
light), and around 900 or more in complete
dark.

Hooking up the light sensor module (instead
of the raw sensor) is more simple. You
simply provide it Vcc(V), Ground (G)
and S (signal) into the same analog input
(A5), but using the sensor headers if
your arduino has them (right). Just be
sure to note the your boards ordering of
the S,V, and G pins.

Here's the code:

// With a 1k resistor in series with this light sensor, you should
// get around 900 range in the dark, around 600 in ambient, and
// around 2-200 range with an LED shining on it. Different values for
// different resistors. This is for a CdS photo resistor cell with
// approximate attributes of:
// DARK ~ 100k AMBIENT ~ 2k LIT ~ 0.7k

const int ls = A5; //analog pin to which LS is connected
int ls_value = 0; //variable to store LS values,
 //we'll set this to zero first.

37

Wiring diagram for the raw light sensor and 10k resistor.
Source: http://wiki.xinchejian.com/wiki/Introduction_to_Arduino

Raw CdS light
sensor & schematic

KY-018 CdS/resistor module

No breadboard is needed if using a module
sensor and your arduino has SVG headers!

http://wiki.xinchejian.com/wiki/Introduction_to_Arduino

void setup()
{
 Serial.begin(9600); //Start the serial monitor
 pinMode(ls, INPUT); //Tell arduino that this pin is for input
}

void loop()
{
 ls_value = analogRead(ls); //reads the light sensor values
 Serial.println(ls_value); //prints the LS values to serial monitor
 delay(50); //slow it down a bit
}

Try This: Ever hear of a Thermin? It's a musical instrument you can play by holding
your hand over it! You can make one by combining this light detector with one of
the previous sound or buzzer or sound recipes. Just hook up a buzzer or speaker to
one of your digital output pins and add their int variable and setup sections to your
own code and use the tone() line below in your loop:

 tone(bunnerPin, ls_value, 10); //You just made a light Theremin

Tip: For a smoother sound, decrease your delay(50); line!

Note: If you're using a buzzer and getting strange (non-clean) garbled sounds, see the
“OUTPUT: Buzzer Alarms” recipe on what can cause that.

Q: Do you like the sounds you can create with light?
Look over the recipe for “Ultrasonic Eyes” and see if you can make music with that sensor too!
Do you think it will sound any different?

Fail:
There's not a lot to go wrong with this setup, however common problems may include:

• Not having a raw sensor resistor and power hooked up correctly.
• Not tapping your A5 input reading off where the light sensor and resistor meet on the

breadboard.
• Not having all your variables from the two programs both integrated, using the same variables

names, a single unified setup() and loop() sections.

38

INPUT: DHT-22 Humidity/Temperature Sensor Detecting relative humidity & temperature.

What:
The DHT-22 is a low cost, easy to use, and fairly accurate sensor for measuring both
relative humidity (+- 5%) as well as temperature +-0.5 °C) — all over a
convenient “1 wire” serial interface. The inexpensive module can be run
on either 3.3v or 5v, and the mounted “module version” (lower/left)
includes built in pull up/conditioning resistors so that no breadboard or
additional components are needed to simply connect it and get started!

How:
Connecting the DHT-22 module is accomplished via just three
wires; two for power and one for the bi-directional, serial data
or “1-wire” link (shown going into digital pin 4).

To connect (right), with the power off, simply connect the DHT
module's GND to the Ardiono's GND, Vcc to 5v, and the DATA
pin to digital I/O pin 4 (or which ever digital I/O pin you want
to use).

If your Arudino features SVG sensor headers, you can simply
find the #4 SVG location and connect your:

• GND→G on the header
• +5V→V (middle, vertically), and
• DATA→S on the header.

However, before you can “talk” to the DHT, you need to first
configure your Arduino environment with the proper library
(created by Adafruit). To load the Adafruit DHT library, go to
your Arduino IDE's Sketch / Include Library / Manage Libraries
interface. One there, search for “DHT” and install the two latest
libraries:

1) “DHT sensor library By Adafruit”
 +
2) “Adafruit Unified Sensor By Adafruit”

Once you have these in place, just load the example code (under the Arduino IDE's File / Examples /
DHT Sensor library / DHTtester), or load this example code:

// Based on example sketch for various DHT humidity/temperature sensors
// by ladyada, public domain
#include "DHT.h"
#define DHTPIN 4 // what digital pin we're connected to
#define DHTTYPE DHT22 // DHT 22 (aka AM2302), AM2321

DHT dht(DHTPIN, DHTTYPE);

39

No breadboard is needed if your arduino
has SVG sensor headers!

void setup() {
 Serial.begin(9600);
 Serial.println("DHT-22 test!");
 dht.begin();
}

void loop() {
 delay(2000); // Wait a few seconds between measurements.
 // Reading temperature or humidity takes about 250 milliseconds!
 // Sensor readings may also be up to 2 seconds 'old' (its very slow)
 float h = dht.readHumidity();
 float t = dht.readTemperature(); // Read temperature as °C
 float f = dht.readTemperature(true); // Read temperature as °F

 // Check if any reads failed and exit early (to try again).
 if (isnan(h) || isnan(t) || isnan(f)) {
 Serial.println("Failed to read from DHT sensor!");
 return;
 }

 float hif = dht.computeHeatIndex(f, h); // Compute heat index °F
 float hic = dht.computeHeatIndex(t, h, false); // Compute heat index °C

 Serial.print("Humidity: "); Serial.print(h); Serial.print(" %\t");
 Serial.print("Temperature: "); Serial.print(t); Serial.print(" °C (");
 Serial.print(f); Serial.print(" °F)\t\t");
 Serial.print("Heat index: "); Serial.print(hic); Serial.print(" °C (");
 Serial.print(hif); Serial.println(" °F)");
}

Q: What happens when you run this?

Q: What happens when you breath on the sensor and when you stop?

Fail:
The most common problems with this circuit is getting your pins hooked up wrong. Always double
check your +5v and Ground. Getting those wrong can “let the magi smoke out”.

-Check your wiring
-Make sure you program in a wait-time for your sensor to initialize
-Different readings than your neighbor? In yours in the sun? Under an AC vent?

40

INPUT: People Motion Sensor PIR motion sensor for detecting motion up to 20ft away

What:
The “PIR” in PIR motion sensor stands for Passive Infra Red and motion sensor modules that passively
detects body heat (or change in the temperature profile) in a visible space for up to 20ft away. Its
operation is very simple and cheap to employ, and is commonly used in burglar alarms and outdoor
motion activated lights.

How:
The PIR sensor is very simple to operate. It has only three
pins. One power (+5V) pin, one ground (GND) pin and one
active high OUT signal pin*. Once the module powers up
and averages out its field of view (this takes between 15-30
seconds), then the OUT pin will go HIGH when there is
motion and low a short time after the motion subsides.

*NOTE: This sensor runs on 5V, but sends out its OUTput
signal at 3.3volts, which means that the most reliable setting
for using it with an arduino is achieved by putting your arduino
into 3.3v digital mode (usually a small 5v/3.3v switch on the
arduino).

The L H mode jumper controls whether constant movement creates a constant HIGH condition (set to
L) , or multiple HIGH/LOW pulses for as long as it senses motion (H mode). In most cases the L-
mode is desired (HIGH for as long as there in movement). The delay-time and distance adjust
(sensitivity) potentiometers should not be adjusted without speaking to an instructor first).

Connection is very strait forward, but we will connect it in this lab to the arduino's digital I/O pin #2.

The arduino requires no special software library
to use this PIR module, but simply reads the
OUT signal pin – HIGH for motion, LOW for
no motion.. In fact, this sensor does not even
need an arduino, but could be connected directly
to a battery and power relay for controlling
lights, space heaters, alarms, etc. However the
arduino is convenient for giving such projects a
little more intelligence and flexibility.

41

Here's the code for simply turning on and off a light with your PIR motion sensor:
/////////////////////////////
//VARIABLES
int calibrationTime = 20; //the time we give the sensor to calibrate (20-30sec)
int pirPin = 2; //the digital pin connected to the PIR sensor's output
int ledPin = 13; // the built in LED pin

/////////////////////////////
void setup(){
 Serial.begin(9600);
 pinMode(pirPin, INPUT); // Set up the various I/O pins
 pinMode(ledPin, OUTPUT);
 digitalWrite(pirPin, LOW);

 //give the sensor some time to calibrate (monitor state on the serial port)
 Serial.print("calibrating sensor ");
 for(int i = 0; i < calibrationTime; i++){
 Serial.print(".");
 delay(1000);
 }
 Serial.println(" done");
 Serial.println("SENSOR ACTIVE");
 delay(50);
 }

////////////////////////////
void loop(){

 if(digitalRead(pirPin) == HIGH){ // If the PIR is HIGH
 digitalWrite(ledPin, HIGH); // then turn on the LED pin and
 Serial.println("HIGH (motion)"); // print "HIGH (motion)" on serial port
 }
 else {
 digitalWrite(ledPin, LOW); // else, make the LED pin low and
 Serial.println("LOW (no motion)"); // print "LOW (no motion)" on serial port
 }
 delay(250); // 250mS delay
}

What else can you control or output using a motion sensor?

Fail:
The most common problems with this circuit is getting your pins hooked up wrong. BE SURE TO
HAVE A TA CHECK YOUR WIRING BEFORE POWERING UP YOUR CIRCUIT!
-Check your wiring
-Make sure you program in a wait-time for your sensor to initialize
-Be sure your arduino is set to 3.3v mode and that you are sending 5V to power the sensor

42

OUTPUT: 7 Segment LED Display w/TM1637 Module Displaying “digital clock” numbers w/LEDs.

What:
The TM1637 is one of the quickest and easiest ways to employ a seven segment
LED display in your projects. The units are small, cheap and very bright and
usable in daylight. It has two power pins, and two I/O lines, a CLK which needs a
clock input, and a DIO or digital I/O line that we communicate with the module
with. It's very easy to use, but needs some special drivers that need to be manually
loaded in your Arduino environment.

How:
The library/driver for this device in the Arduino library manager, can be problematic, so instead we
recommend manually downloading and importing the avishorp / TM1637 version of this driver, as it is
a much better match for what we use these displays for at LCBB. To get this third party library
installed, on the machine you're programming the Arduino with:

1) Browse out to the avishorp/TM1637 github page here:
https://github.com/avishorp/TM1637 and click the

“Clone of Download” and the “Download ZIP” buttons.

2) Once the library download completes, in the Arduino
interface, click Sketch / Include Library / Add .ZIP as seen to
the right:

Once you get the driver installed, hookup is fairly
stright forward. Like other digital modules used with
the Arduino, you need to connect the module's VCC
→ 5V, GND→GND, and then the module's CLK
(clock) and DIO (digital IO) to two unused Digital IO
pins. Here in our schematic we're using pins 9 and 8
respectively (right).

Once you get it hooked up, load the TM1637Test fom
the Arduino interface File / Examples / TM1637 /
TM1637Test

After doing so, be sure to change the following two
lines to match how you hooked up the hardware above:

#include <Arduino.h>
#include <TM1637Display.h>

// Module connection pins (Digital Pins)
#define CLK 8
#define DIO 9
...

(example code also available from https://github.com/LetsCodeBlacksburg/arduino-recipes)

43

https://github.com/LetsCodeBlacksburg/arduino-recipes
https://github.com/avishorp/TM1637

INPUT / OUTPUT: The LCD / Keypad shield Displaying text and taking keypress inputs

What:
By itself the Arduino has limited capability for interacting
with humans. The LCD / Keypad shield provides a simple
way to display information and allow direct user input
through four direction and one select button.

NOTE: Shields are plug in arduino modules that are super
easy to use, however their pins are easy to bend, so please
be careful and don't force the shield or be rough with it!

How:
Hardware setup for shields is extremely easy – just power
off/unplug the arduino, then carefully line up the shield pins and plug in the shield! The only gotcha is
to be sure and align the pins on the shield correctly.

Don’t Connect/Disconnect the LCD Shield: All Arduino shields are somewhat fragile to connect and disconnect.
As such, we ask that you not connect or disconnect out shields as the pins are very easy to bend, which leaves us
with an unusable LCD, or worse, you can damage or blow the Arduino! Please call your TA-Helper over to assist
you mounting or removing a shield from your Arduino.

Whenever you use any shield with an Arduino, it's important to understand what pins the shield
actually use, both for being able to communicate with it and for knowing any conflicts which could
occur if you want to stack shields. Below is a list of the pins used by the LCD / Keypad shield.

Pin Function

Analog 0 Button (select, up, right, down, and left)

Digital 4 DB4

Digital 5 DB5

Digital 6 DB6

Digital 7 DB7

Digital 8 RS – Register Select (Data or Signal Display Selection)

Digital 9 Enable

Digital 10 Backlight Control

This shield uses a lot of digital pins, so this shield can not often be “Stacked” and used with other
shields as it only leaves digital pins 11, 12, and 13 free and also takes analog pin A0 to read the keypad
buttons.

Even though the LCD & keypad are located on the same board, the buttons and the LCD are separate
and are coded separately. We'll start with coding the buttons, but feel free to just skip to the “Writing to
the LCD” if you just want to print messages to the LCD. You can always do the buttons later.

44

Reading the buttons:

The buttons on the shield use a rather clever design. If you've connected buttons to the Arduino in the
past, you probably connected them to digital inputs, maybe with a pull-up resistor. But that limits you
to one button per pin. However this shield uses a single ANALOG pin for reading all the buttons. How
is this possible?

The buttons are wired to a series of resistors so that when you press a button, a different voltage is
presented to the analog 0 pin, and thus a different reading when you call analogRead for each button.

Enter the following code:

void setup() {
 // initialize serial communication at 9600 bits per second:
 Serial.begin(9600);
}

// the loop routine runs over and over again forever:
void loop() {
 // read the input on analog pin 0:
 int buttonValue = analogRead(A0);
 // print out the value you read:
 Serial.println(buttonValue);
 delay(1); // delay in between reads for stability
}

This code reads the analog pin and writes the result to the serial port. So after uploading this sketch,

open the serial monitor in the IDE and watch what happens.

Q: Press the buttons. What happens with the different buttons?

Did you press the right-most button? It may be labeled RST or RESET. This button is different from
the others. This button is hard-wired as a RESET button. Pressing it will restart the Arduino, much like
if you unplugged the power and then plugged it back it. You can't read or use it like the others.

45

Let's expand on the original button code a bit with a helpful function to decode those buttons into
something a bit friendlier.

#define btnRIGHT 0
#define btnUP 1
#define btnDOWN 2
#define btnLEFT 3
#define btnSELECT 4
#define btnNONE 5

// read the buttons
int read_LCD_buttons()
{
 int adc_key_in = analogRead(0); // read the value from the sensor
 // These values should work with all current keypads.
 // If you get unexpected results check the readings you get with you shield

 // We make this the 1st option for speed reasons
 // since it will be the most likely result
 if (adc_key_in > 1000) return btnNONE;
 if (adc_key_in < 50) return btnRIGHT;
 if (adc_key_in < 250) return btnUP;
 if (adc_key_in < 450) return btnDOWN;
 if (adc_key_in < 650) return btnLEFT;
 if (adc_key_in < 1000) return btnSELECT;
 return btnNONE; // when all others fail, return this...
}

// the setup routine runs once when you press reset:
void setup() {
 // initialize serial communication at 9600 bits per second:
 Serial.begin(9600);
}

// the loop routine runs over and over again forever:
void loop() {
 // read the input on analog pin 0:
 int sensorValue = read_LCD_buttons();
 // print out the value you read:
 Serial.println(sensorValue);
 delay(1); // delay in between reads for stability
}

Enter, upload, and run the code as before. Now in your serial monitor window you should see '5' if
nothing is pressed and other values between '0' and '4' when pressing a button.

Why not code in the exact values you saw in the first program? That might not be reliable or portable.
While all the shields use the same common design and values, there is still some variation between
parts. Each value should be within 20% of it's value, but unless something is REALLY wrong the
values will be within a predictable range, so by mapping those values to a ranges we can make our
program tolerant of differences between boards or temperature effects.
So that's all there is to the buttons! So let's move to the more exciting bit – the LCD!

46

Writing to the LCD:

Printing to the 1602 using the LiquidCrystal library is a breeze. The full reference for the library can
be found at http://arduino.cc/en/Reference/LiquidCrystal

The LiquidCrystal library is actually fairly generic. It will work with any 1602 or other HD44780(chip)
based display – you just have to tell it how it's connected and how many lines it has. Using the shield
the connection is fixed, but you still have to tell the library those connections – it can't tell
automatically what you have plugged in.

Here's a simple “Hello World” program setting up the LCD and displaying the time since the Arduino
started up.

#include <LiquidCrystal.h>

// Create the LiquidCrystal object and define the LCD shield pins used
// The parameters are: rs, rw, enable, d4, d5, d6, d7
LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

void setup()
{
 // Start the library, telling it we have a 16 column x 2 row display
 lcd.begin(16, 2);
 // Put the cursor on the first column of the first row
 lcd.setCursor(0, 0);
 lcd.print("Hello, world!");
 // First column of second row
 lcd.setCursor(0, 1);
 lcd.print("Seconds: ");
}

void loop()
{
 lcd.setCursor(9,1); // move cursor to second line "1" and 9 spaces over
 lcd.print(millis()/1000); // display seconds elapsed since power-up
}

Pretty straightforward, right? There are a couple of “gotchas” to keep in mind:

1. Notice that, like most everything else in programming, the numbering of the rows and columns
start with 0, not 1.

2. When you print something, it only prints EXACTLY what you tell it. If there was something
else on the row before and your new text is shorter, it will only overwrite as much as the new
text leaving behind a portion of the old. So you may need to pad out your strings with spaces to
clear out any old output.

There are a lot more capabilities in the library – scrolling, blinking, and even creating special
characters. Look at the reference linked above for more information.

47

http://arduino.cc/en/Reference/LiquidCrystal

Using the LCD & keypad buttons:

The example below puts together the LCD output and the keypad/button reading into one super useful
bit of code:

//Sample using LiquidCrystal library
#include <LiquidCrystal.h>

/***
This program will test the LCD panel and the buttons
Mark Bramwell, July 2010
http://www.dfrobot.com/wiki/index.php?
title=Arduino_LCD_KeyPad_Shield_(SKU:_DFR0009)
**/

// select the pins used on the LCD panel
LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

// define some values used by the panel and buttons
int lcd_key = 0;
int adc_key_in = 0;
#define btnRIGHT 0
#define btnUP 1
#define btnDOWN 2
#define btnLEFT 3
#define btnSELECT 4
#define btnNONE 5

// read the buttons
int read_LCD_buttons()
{
 adc_key_in = analogRead(0); // read the value from the sensor
 if (adc_key_in > 1000) return btnNONE; // We make this the 1st option for
speed reasons since it will be the most likely result
 if (adc_key_in < 50) return btnRIGHT;
 if (adc_key_in < 250) return btnUP;
 if (adc_key_in < 450) return btnDOWN;
 if (adc_key_in < 650) return btnLEFT;
 if (adc_key_in < 1000) return btnSELECT;

 return btnNONE; // when all others fail, return this...
}

void setup()
{
 lcd.begin(16, 2);
 lcd.setCursor(0,0);
 lcd.print("Push the buttons");
}

void loop()
{
 lcd.setCursor(9,1); // move cursor to second line "1" and 9

48

spaces over
 lcd.print(millis()/1000); // display seconds elapsed since power-up

 lcd.setCursor(0,1); // move to the begining of the second line
 lcd_key = read_LCD_buttons(); // read the buttons

 switch (lcd_key) // depending on which button was pushed, we
perform an action
 {
 case btnRIGHT:
 {
 lcd.print("RIGHT ");
 break;
 }
 case btnLEFT:
 {
 lcd.print("LEFT ");
 break;
 }
 case btnUP:
 {
 lcd.print("UP ");
 break;
 }
 case btnDOWN:
 {
 lcd.print("DOWN ");
 break;
 }
 case btnSELECT:
 {
 lcd.print("SELECT");
 break;
 }
 case btnNONE:
 {
 lcd.print("NONE ");
 break;
 }
 }

}

This code is from the DF Robot wiki page, combining reading the buttons with displaying some text in
response.

49

Stretch Goal #1: Can you come up with a simple game using the buttons and the display?
Perhaps start by moving a character around the screen in response to button presses!

Things to think about:
– When moving your character around, what has to happen in the character's old

position?
– What will you do when you hit the end of a row?
– What will you do when you run off the top or bottom of the screen?

Fail:
Since this is an Arduino shield, there is very little chance for wiring errors. However, a very common
issue using the LCD shield for the first time is that the contrast can be off. The LCD contrast is
controlled by a small blue, multi-turn potentiometer (knob) that can only be turned with a jeweler’s
screwdriver. If you run the demo “Hello, World!” code and see nothing, or a bunch of blue/white
rectangles as in the left image:

Then the little blue contrast knob (seen in upper left corner) may need to be adjusted. See your TA for
help. Once working, your Hello World code should look like the screen on the right.

50

COMM: Wired Web & Email Communications Using Ethernet networking for Web & Email

What:
The Ethernet shield gives your arduino projects a wired connection
to a local network or the full Internet. The board (once connected)
can either take a static or fetch a dynamic IP address (from a
DHCP server or home router) and function as either a client (e.g.
“browser”) or a server (e.g. web server, etc) ― or even be used to
send out emails, SMS/Text messages or even tweets!

The built in Wiz5100 networking chip does a very good job at
offloading much of the complexities of running networking
connections on the Arduino, but the required libraries do take up
quite a bit of memory. So if you will be fine for doing very basic
web, email or other basic networking communications, but
anything more complex than than (dynamic web content, serving
video or lots of images) and you'll want to start looking for a full
computer platform with more horsepower, memory and
networking support such as the RaspberryPi, Beaglebone or other
embedded Linux Operating System.

How:
This module is wired to require pins 13, 12, 11, 10 for Ethernet
usage, and pin 4 for SD card use (see Micro-SD card recipe).

This shield uses the Ethernet Library located here:
http://arduino.cc/en/Reference/Ethernet

Connecting and Disconnecting a Shield:
With your arduino unplugged, and on a static free surface, you will
first want to carefully connect your Ethernet shield to your arduino,
lining up the pins on the end opposite the shiny Ethernet and USB ports (see
right, bottom). If your boards have the six ICSP pins, that is a good way of
lining everything up (see photo on right) .

Once the shield is mounted, you can connect the Arduino/Laptop USB cable,
and then the Ethernet cable. (photo at top of page).

To remove a shield, DO NOT just “pull it
off”; you will bend our pins! Instead, gently
half-way pry one side lose, then half way pry
the other. Then gently lift off the shield and
place it in a protective container.

51

http://arduino.cc/en/Reference/Ethernet

Getting an IP Address:
The code below can be typed in, or loaded by using the example code Examples / Ethernet /
DhcpAddressPrinter :

#include <SPI.h>
#include <Ethernet.h>

// Change at least the last hex number below to any two digit value so that
// you have a unique address on your class network. Otherwise, there will
// be MAC address conflicts and you and your neighbors will have problems.
byte mac[] = {
 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02 };

// Initialize the Ethernet server library
// with using DHCP for your IP (see serial monitor) and port you wish
// to use (port 80 is default for HTTP):
EthernetServer server(80);

void setup() {
 // Open serial communications and wait for port to open:
 Serial.begin(9600);
 while (!Serial) {
 ; // wait for serial port to connect. Needed for Leonardo only

 // start the Ethernet connection:
 if (Ethernet.begin(mac) == 0) {
 Serial.println("Failed to configure Ethernet using DHCP");
 // no point in carrying on, so do nothing forevermore:
 for(;;)
 ;
 }
 }

 // start the Ethernet connection and the server:
 Ethernet.begin(mac);
 server.begin();
 Serial.print("Arduino server is at ");
 Serial.println(Ethernet.localIP());
}

// Main execution loop
void loop() {
 Serial.print("."); // Serial monitor heartbeat
 delay(1000); // Simple 1 second do nothing
}

52

Quick Connectivity Test:
After compiling and uploading this code, click on

the serial monitor icon , and copy or write
down your IP in the serial console window (a four
part number like 10.4.2.189).

If you are able to list your IP (above), then hook
your laptop up to the same wired network, and try
pinging your arduino like this:

ping -c 3 10.4.20.189 # Pings arduino three times (on Win use -n)
PING 10.4.20.171 (10.4.20.171) 56(84) bytes of data.
64 bytes from 10.4.20.171: icmp_seq=1 ttl=128 time=0.235 ms
64 bytes from 10.4.20.171: icmp_seq=2 ttl=128 time=0.252 ms
64 bytes from 10.4.20.171: icmp_seq=3 ttl=128 time=0.221 ms

--- 10.4.20.171 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/mdev = 0.221/0.236/0.252/0.012 ms

Self Test Questions

Q: Did your ping test work?

Q: If so, what is your IP address? (write down on note pad)

If that worked, then your Arduino is officially on the network and you can now continue to to set it up
as a little web server, email or twitter client. If problems, see the Fail section below.

53

Making a Mini Web Server:
Once you have the ping/connectivity test above working, you're ready to start serving web content or
real time input sensor data. First, we need to replace the entire main loop to 1) detect client
connections, 2) write out the HTTP web headers, 3) print some basic web content (test text). See
below:

// Main execution loop
void loop() {
 // listen for incoming clients
 EthernetClient client = server.available();
 // If a client has connected, do this
 if (client) {
 Serial.println("new client");
 // an http request ends with a blank line
 boolean currentLineIsBlank = true;
 while (client.connected()) {
 if (client.available()) {
 char c = client.read();
 Serial.write(c);
 // if you've gotten to the end of the line (received a newline
 // character) and the line is blank, the http request has ended,
 // so you can send a reply
 if (c == '\n' && currentLineIsBlank) {
 // send a standard http response header
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html");
 client.println("Connection: close"); // the connection will be closed after gets response

 client.println("Refresh: 5"); // refresh the page automatically every 5 sec
 client.println();
 client.println("<!DOCTYPE HTML>");
 client.println("<html>"); // Opens HTML content
 client.println("<pre>"); // Preformatted text block
 client.println("TEST... SUCCESS!!!"); // Actually printed to browser screen
 client.println("</pre>");
 client.println("</html>"); // closes out html web page
 break;
 }
 if (c == '\n') {
 // you're starting a new line
 currentLineIsBlank = true;
 }
 else if (c != '\r') {
 // you've gotten a character on the current line
 currentLineIsBlank = false;
 }
 }
 }
 // give the web browser time to receive the data
 delay(10);
 // close the connection:
 client.stop();
 Serial.println("client disconnected");
 }
}

Congratulations! If you have TEST... SUCCESS!!! on your browser screen, then your Arduino is
now serving static web content.

Q: Did you get your arduino to display the test web page?

54

Displaying Analog Readings:
After you get the basic web content bring served from your arduino, next try serving out some analog
voltages values from the six analog inputs 0 – 5. Find the “TEST... SUCCESS!!!” line in the HTML
content code area of your current code and replace the whole line with this code below

 client.println("================================");
 client.println("=== Tweeks Arduino Webserver ===");
 client.println("================================");
 // output the value of each analog input pin
 for (int analogChannel = 0; analogChannel < 6; analogChannel++) {
 int sensorReading = analogRead(analogChannel);
 client.print("analog input ");
 client.print(analogChannel);
 client.print(" is ");
 // Adjust the for loop, adjust “n” of x<sensorReading/n to

// scale the 1023 bar graph (play with it)
 int x=0;
 for (x=0 ; x<sensorReading/15 ; x=x+1) {
 client.print("="); // builds your ASCII TXT bar graph
 }
 client.print(sensorReading); // prints the actual value
 client.print("
");
 }
 client.println("</pre>");
 client.println("</html>"); // closes out html web page

If you got it working, your web browser should be displaying real time graphs of your six analog input
readings like this:

================================
=== Tweeks Arduino Webserver ===
================================
analog input 0 is =====================310
analog input 1 is ======================328
analog input 2 is =====================313
analog input 3 is ========================346
analog input 4 is =====================301
analog input 5 is =====================314

Display Real World Values on The Web:
Want to read a real value? Look at the “What” sections of the INPUT: Potentiometer Recipe to hook
up a potentiometer (knob) to Analog input A0. Look at the “What” and “How” sections of INPUT:
Light Sensor to measure the amount of ambient light in the room.

Stretch Goal #1: Can you make your pot (knob) value print out to be “loud” “medium” or
“soft”, or your light sensor value print out to be “lights on” or “lights off”?
Stretch Goal #2: Want cooler looking graphs and text windows? Check out the HTML codes
you can use in place of the “=” signs here (hint, use the &code; format to client.print() :
http://www.theasciicode.com.ar/extended-ascii-code/bottom-half-block-ascii-code-220.html

55

http://www.theasciicode.com.ar/extended-ascii-code/bottom-half-block-ascii-code-220.html

Sending Email:
Email is still being tested, but here's the code you can start playing with if email is your desire:

To use it for the Nov 20th 2014 workshop, see the guest instructor Steve Swenson for a guest SMTP
username, password for relaying (or sending through) email out of his SMTP accounts. For this
November workshop, also:

• Change line 13 to smtp.emailsrvr.com, keep the port at 587.
• Change line 73 to add your base64 encoded email address, so it should look like:

"AUTH login -insert-your-base64-username-here-"
• Change line 76 to contain your base64 encoded password
• Change line 79 and 89 to the from address (-username-@rackeddit.net)
• Change line 82 and 90 to the TO address, e.g. me@gmail.com
• Everyone must chose a unique MAC address on line 107
• Suspect the function on line 38 isn't used. You can cut it to save some bytes.
• If you need to base64 encode anything else, you can use this fiddle:

http://jsfiddle.net/pb4usf47/

Here's the code:
(for line numbers, reference the github code here:
https://gist.github.com/ctigeek/a6ac72253ddd588e9b35#file-emailtest-ino

// Arduino script for sending an email by @ctigeek.

#include <SPI.h>
#include <Ethernet.h>

EthernetClient client;
signed long next;

int connectToServer() {
 Serial.println(F("Connecting to server..."));

 if (!client.connect("smtp.server.com",587))
 return 0;

 Serial.println(F("connected to mail server."));
 return 1;
}

int waitForReply() {
 next = millis() + 5000;
 while(client.available()==0)
 {
 if (next - millis() < 0)
 return 0;
 }
 int size;
 while((size = client.available()) > 0)
 {
 uint8_t* msg = (uint8_t*)malloc(size);
 size = client.read(msg,size);
 Serial.write(msg,size);

56

https://gist.github.com/ctigeek/a6ac72253ddd588e9b35#file-emailtest-ino
http://jsfiddle.net/pb4usf47/
mailto:me@gmail.com
mailto:-username-@rackeddit.net

 free(msg);
 }
 return 1;
}

int sendAndWaitForReply(char* txtToSend) {
 next = millis() + 5000;
 client.println(txtToSend);
 Serial.println(txtToSend);
 if (!waitForReply())
 return 0;

 return 1;
}

void justSend(const __FlashStringHelper* txtToSend) {
 client.println(txtToSend);
 Serial.println(txtToSend);
}

int sendAndWaitForReply(const __FlashStringHelper* txtToSend) {
 next = millis() + 5000;
 client.println(txtToSend);
 Serial.println(txtToSend);
 if (!waitForReply())
 return 0;

 return 1;
}

int sendEmail() {
 if (!connectToServer())
 return 0;

 if (!waitForReply())
 return 0;

 if (!sendAndWaitForReply(F("EHLO Arduino")))
 return 0;

 if (!sendAndWaitForReply(F("AUTH login "))) //enter base64 encoded email
address here
 return 0;

 if (!sendAndWaitForReply(F(""))) //enter base64 encoded password here
 return 0;

 if (!sendAndWaitForReply(F("MAIL FROM:<your email address here>")))
 return 0;

 if (!sendAndWaitForReply(F("RCPT TO:<recipients email address here.>")))
 return 0;

 if (!sendAndWaitForReply(F("DATA")))
 return 0;

57

 justSend(F("MIME-Version: 1.0"));
 justSend(F("From: sender@domain.com"));
 justSend(F("To: recipient@domain.com"));
 justSend(F("Subject: Arduino!"));
 justSend(F("Content-type: text/plain; charset=us-ascii"));
 justSend(F("")); //this separates the headers from the body.

 justSend(F("Arduinos are so small!"));

 if (!sendAndWaitForReply(F("."))) //this means EOF to the smtp server.
 return 0;
 if (!sendAndWaitForReply(F("QUIT")))
 return 0;
 return 1;
}

void setup() {
 Serial.begin(9600);
 uint8_t mac[6] = {0x00,0x01,0x02,0x03,0x04,0x05};
 Ethernet.begin(mac);
 Serial.print(F("localIP: "));
 Serial.println(Ethernet.localIP());
 sendEmail();
}

void loop() {

}

Fail:
For the Web portions of this recipe:

• If Failed the “Quick Connectivity Test”, then:
◦ Check that ethernet cable is connected and you have a link light on the arduino and switch
◦ Check that the lights on your ethernet board are properly lit (shield is properly hooked up).
◦ Did you GET an IP address printed to the serial console?
◦ Is your laptop hooked to the same wired network?
◦ Check for error messages during the build (indicating typos). CODE IS CAPS SENSITIVE!
◦ Look at how your neighbor got it working or ask the TA for help

• If Failed the “Making a Mini Web Server” “TEST.. SUCCCESS” (but passed the ping test):
◦ PEBKAC... Check for typos.

• If Failed the “Displaying Analog Readings” section, then:
◦ PEBKAC... Check for typos

• If you can't find typos, but it isn't working, copy/paste the example code from github, or the
student thumb drive (if the instructor has code locally).

58

COMM: Wireless Web & Email Communications Using WiFi ESP-01 for Web & Email

What:
The ESP-01 (or ESP8266 ver 01) is a very low cost (around $1!), stand alone
microcontroller that handles WiFi communication and networking all by itself, and
can be “connected to” from other microcontrollers that can only speak serial
send(TX) / receive(RX) data. This makes it a simple and cheap way of getting an
Arduino (or other embedded system) onto a local wireless network, the Internet or
even the web!

What we're going to do here is simply get this ESP-01 module (shown here
with a blue 5v-to-3.3v adapter board) onto the local wireless network, take one
or two simple analog readings, and “publish” them to a mini web server we
will run from the Arduino, out to the ESP-01 (via software serial link) to be
served on www/port 80 to the Internet! Pretty cool, right?!

NOTE: To get any device onto the local wireless LAN, you need to have access. Unless it is a
completely open/public (no login) network, this means either a valid username/password, or
your device's MAC address must already be registered be “be allowed” to get on line. This
workshop has already taken measures to ensure you can get on. See your instructor for any
special SSID/login info. Also know, the drivers used in this recipe only work with WAP, WPA,
and some WPA2 (SSID + network password). It does not work with WPA2-Enterprise (unique
username/password logins).

59

How:
The raw ESP-01 device does not use a standard pitch connector and it does not play well with
breadboards, and so physically connecting one can be a challenge. Add to that that it is also a 3.3V
device and can be easily blown if connected directly to a 5v Arduino.

TIP: The ESP-01 and other ESP modules like to communicate at a default serial “baud” rate of
115200. The ArduinoMega can handle that speed, but the Uno and smaller Arduinos can not.
Before you can use any off the shelf ESP-01 with an Uno (or similar), you need to configure the
ESP unit's UART BAUD rate to 9600, and do all serial data (to the arduino and to the ESP
module using SoftwareSerial) at 9600 baud. This is a common mistake if doing this at home. If
you not not using a LCBB supplied ESP-01, you need to set this with the “AT + UART_DEF =
9600,8,1,0,0” command to the ESP-01. Google for Uno, ESP-01, 9600, UART_DEF more
information.

Lucky for us, Let's Code's ESP-01's have all been set
to 9600 baud, and we're also using these convenient
adapter boards (small blue board under the ESP-01)
that makes it super easy to connect, plus has a 5-to-
3.3V regulator, and 3.3/5v voltage converters for the
serial data lines!

To connect our ESP-01 module using its special
carrier adapter board only takes four wires.. two for
power and two for serial send (TX) and receive
(RX). If your Arduino has an SVG sendor/servo
header (see right), then it makes things even easier
as no breadboard (for power) is needed.
Here's how to hook it up:

• ESP GND→to GND on Arduino (or G on the SVG header)
• ESP VCC → 5V on arduino (or V on the SVG header)
• ESP TX → to pin 6 (or pin 6's S on the SVG header)
• ESP RX → to pin 7 (or pin 7's S on the SVG header)

To be able to serve some sort of “data”, it's also useful to hook up a simple light sensor or
potentiometer to an analog input so that you can monitor some real, physcial thing from the mini-web
server we're going to run, but this is not required. In this example we just monitor the random analog
input data on analog pin A5 and call it “light”, but you can use the “Light Sensor” recipe and measure it
for real.

60

No breadboard is needed if your arduino
has SVG sensor headers!

Special (not-stock) WiFiESPLibrary Install:
We recommend against installing the WiFiEsp (by bportaluri) from the Arduino's built in library search/
add tool. It has some dependency issues that will cause compile issues on various platforms. Instead,
install a fixed up version of the original WiFiEsp library available from Tweeks' gihub fork of this ESP
library. To get the correct/working version, download this .ZIP archive of the library, browse out to
Tweeks' github repo to his fork of WiFiEsp here: https://github.com/Tweeks-va/WiFiEsp

Next, click on Clone or Download / Download ZIP icon.

Once the download is complete, in the Arduino IDE import the
downloaded library zip file with the Arduino IDE's “Add .ZIP
Library” feature (shown right).

Now let's start getting our Arduino on line…

61

https://github.com/Tweeks-va/WiFiEsp

Below is the code to implement our miniature WiFi web server enabled Arduino. If you have problems
getting it all poked in accurately, the barebones functional version can be downloaded from the LCBB
arduino-recipes repository at https://github.com/LetsCodeBlacksburg/arduino-recipes (click on wifi-
web-esp-01-sensors) and copy the raw code into a new Arduino IDE window:

NOTE: You MUST already be able to get on your local wifi network and provide the
SSID (network name) and password in the code below.

// Wireless Libraries & Variables
///////////////////////////////////////
#include <WiFiEsp.h>
#include <WiFiEspClient.h>
#include <WiFiEspServer.h>
#include <WiFiEspUdp.h>
#include "WiFiEsp.h"
// Emulate Serial1 on pins 6/7 if not present
#ifndef HAVE_HWSERIAL1
#include "SoftwareSerial.h"
SoftwareSerial Serial1(6, 7); // RX, TX
#endif
char ssid[] = "LOCAL-WIFI-SSID"; // the network SSID (name) you're
connecting to
char pass[] = "LOCAL-WIFI-PASSWD"; // the network password (blank if
none)
int status = WL_IDLE_STATUS; // the Wifi radio's status
int reqCount = 0; // number of requests received
WiFiEspServer server(80);

const int buzzerPin = 3; // Sound Buzzer

// See Light Sensor recipe
char sensorLightHeader[]= "Current Light Level (0-1023) = ";
int sensorLightData = 0;

// See DHT-22 recipe to make work
char sensorTempHeader[] = "Current Temperature(°C) = ";
float sensorTempData = 0;

// See DHT-22 recipe
char sensorHumidHeader[]= "Current Humidity(%) = ";
float sensorHumidData = 0;

///////// Setup
////////////////////////////////
void setup()
{
 pinMode(buzzerPin, OUTPUT); // Sets buzzerPin as output
 digitalWrite(buzzerPin, HIGH);

 ////// Setup WiFi
 Serial.begin(9600); // initialize serial for debugging
 Serial1.begin(9600); // initialize serial for ESP module
 WiFi.init(&Serial1); // initialize ESP module

62

https://github.com/LetsCodeBlacksburg/arduino-recipes

 if (WiFi.status() == WL_NO_SHIELD) { // check for ESP-01
 Serial.println("WiFi shield not present");
 //buzzer("fail"); // hmmm.. this would be useful if it worked.
 while (true); // don't continue
 }
 // attempt to connect to WiFi network
 while (status != WL_CONNECTED) {
 Serial.print("Attempting to connect to WPA SSID: ");
 Serial.println(ssid);
 status = WiFi.begin(ssid, pass); // Connect to WPA/WPA2 network
 }
 tone(buzzerPin, 2000, 50); delay(50); noTone(buzzerPin); // Connected
 Serial.println("You're connected to the network");
 printWifiStatus();
 server.begin(); // start the web server on port 80
}

//// loop()
/////////////////////////////////////
void loop()
{
serveWebPage(); // This is all we do here. :)
}

//// serveWebPage
////////////////////////////////////
void serveWebPage(){
 // listen for incoming clients
 WiFiEspClient client = server.available();
 if (client) {
 Serial.println("New client");
 // an http request ends with a blank line
 boolean currentLineIsBlank = true;
 while (client.connected()) {
 if (client.available()) {
 char c = client.read();
 Serial.write(c);
 // if you've gotten to the end of the line (received a newline
 // character) and the line is blank, the http request has ended,
 // so you can send a reply
 if (c == '\n' && currentLineIsBlank) {
 sampleSensorData();
 Serial.println("Sending response");

 // send a standard http response header
 // use \r\n instead of many println statements for speed
 client.print(
 "HTTP/1.1 200 OK\r\n"
 "Content-Type: text/html\r\n"
 "Connection: close\r\n" // connection will be closed > response
 "Refresh: 20\r\n" // auto-page refresh every 20 sec
 "\r\n");
 client.print("<!DOCTYPE HTML>\r\n");
 client.print("<html>\r\n");

63

 client.print("<h1>My WiFi Arduino!</h1>\r\n");
 client.print("Requests received: ");
 client.print(++reqCount);
 client.print("
\r\n");
 client.print(sensorLightHeader);
 client.print(sensorLightData);
 client.print("
\r\n");
 // put more sensors here
 client.print("</html>\r\n");
 //buzzer("chirp"); // See buzzer Alarms recipe if interested
 break;
 }
 if (c == '\n') {
 // you're starting a new line
 currentLineIsBlank = true;
 }
 else if (c != '\r') {
 // you've gotten a character on the current line
 currentLineIsBlank = false;
 }
 }
 }
 // give the web browser time to receive the data
 delay(100);

 // close the connection:
 client.stop();
 Serial.println("Client disconnected");
 }
}

//// printWiFiStatus
////////////////////////////////////
void printWifiStatus()
{
 // print the SSID of the network you're attached to
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());

 // print your WiFi shield's IP address
 IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");
 Serial.println(ip);

 // print where to go in the browser
 Serial.println();
 Serial.print("To see this page in action, open a browser to http://");
 Serial.println(ip);
 Serial.println();
 // make a chirp sound once on network
 tone(buzzerPin, 2000, 50); delay(50); noTone(buzzerPin);
}

//// sampleSensorData()

64

///////////////////////////////////
void sampleSensorData(){
 // This is where you do your light, temperature and humidity sampling
(DHT-22 could take TWO SECONDS)

 // Light Sensor (see receipe for more info)
 sensorLightData = analogRead(A5);

 // DHT-22 Humidity/Temp Sensor (see recipe for more info)

 // Other sensors to sample?
 tone(buzzerPin, 1000, 50); delay(50); noTone(buzzerPin);
}

Stretch Goal #1: Can you add a real light sensor, as well as other sensor types? What types of
physical things would you like to monitor in real time? Temperature? Humidity? Combine this
with the DHT-22 Humidity/Temperature recipe to do just that!

Stretch Goal #2: Instead of just reporting TXT sensor values, how about doing data-graphs?
Check out the for loops used to build data value graphs in the “Wired Web” recipe before this
one. How cool can you make your web sensor data look?

Stretch Goal #3: Email was left out of this recipe, but Tweeks' library includes an
SMTPClient.h function for talking to SMTP (email) servers. Can you figure how to get it to
work? If so, use this to send an email, or an email to an SMS (TXT message) gateway (e.g.
phone#@mywirelessprovider.com usually works).

Fail:
Common failures for this recipe are:

• Arduino serial & SoftwareSerial baud rates are not BOTH set to 9600 (must be)
• Bad SSID / password plugged into code (typos)
• Closed network not allowing your SSID to join
• WP2-Enterprise w/indivual username/passwords (instead of a shared SSID password)
• Network requires MAC address registration
• Poor wifi coverage (the antenna in the ESP-01 isn't that great. Check out the WiFiEsp examples

of “Basictest” or ScanNetworks to see all AP RF levels)

65

mailto:phone#@mywirelessprovider.com

Recipe Wish List

Future Recipes & Modules to Add

Arduino Coding/Theory
programming sections
reference commands
coding best practices

IR Remote Control (w/dedicated thin remote)
Bluetooth Remote Control (w/phones)

Future Eletronics Lessons:
Using a multi-meter
Light and external LEDs

20ma limits
resistor
pin modes
dim light means port wasn't set to output
pwm

Drive a motor / transistor
20ma limits
biasing a transistor
pin modes
pwm

Resistors and Ohms law recipe
soldering skills

far future
GPS
9 DOF GYRO
USB hids devices

66

