2008-03-12

HOWTO recover deleted files on an ext3
file system

Carlo Wood, Mar 2008

Introduction

It happens to everyone sooner or later: a split second after you hit Enter you realize your mistake,
but it's too late; you just deleted a valuable file or directory for which no backup exists. Or maybe
you have a backup, but it's a month old... and in shock you see the past month flash before your
eyes as you realize in pain what you'll have to do all over again...

Fortunately, you remember that files are never really deleted, at most overwritten by new
content. So, you remount the disk read-only as fast as possible. But now?

If you Google for "undelete ext3", almost every article you find will be users asking if it's possible
and the answer is every time: no.

The most frequently quoted passage comes from the ext3 FAQ itself:

http://www.xs4all.nl/~carlol7/howto/undelete_ext3.html

Q: How can | recover (undelete) deleted files from my ext3 partition?
Actually, you can't! This is what one of the developers, Andreas Dilger, said about it:

In order to ensure that ext3 can safely resume an unlink after a crash, it actually zeros out
the block pointers in the inode, whereas ext2 just marks these blocks as unused in the block
bitmaps and marks the inode as "deleted" and leaves the block pointers alone.

Your only hope is to "grep" for parts of your files that have been deleted and hope for the
best.

However, this is utter nonsense. All information is still there, also the block pointers. It is just
slightly less likely that those are still there (than on ext2), since they have to be recovered from
the journal. On top of that, the meta data is less coherently related to the real data so that
heuristic algorithms are needed to find things back.

On February 7th, 2008, | accidently deleted my whole home directory: over 3 GB of data, deleted
with rm -rf. The only backup that | had was from June 2007. Not being able to undelete was
unacceptable. So, | ignored what everyone tried to tell me and started to learn how an ext3 file
system really works, and what exactly happens when files are deleted...

Three weeks and nearly 5000 lines of code later, | had recovered every file on my disk.

What You Should Know Before You Begin

The tool that | wrote assumes a spike of recently deleted files (shortly before the last unmount). It
does NOT deal with a corrupted file system, only with accidently but cleanly deleted files.

Also, the program is in a beta stage: as soon as | recovered my own data / stopped the
development of the program. Therefore, it is likely that things might not work entirely
out-of-the-box for you. | stashed the program with asserts, which makes it likely that if

something doesn't work for you then the program will abort instead of trying to gracefully recover.

In that case you will have to dig deeper, and finish the program yourself, so to say.

The program only needs read access to the file system with the deleted files: it does not attempt
to recover the files. Instead, it allows you to make a copy of deleted files and writes those to a
newly created directory tree in the current directory (which obviously should be a different file
system). All paths are relative to the root of the partion, thus— if you are analysing a partition
/dev/md5 which was mounted under /home, then /home is unknown to the partition and to the
program and therefore not part of the path(s). Instead, a path will be something like for example
"carlo/c++/foo.cc", without leading slash. The parition root (/home in the example) is the empty
string, not /.

The name of the program, ext3grep was chosen because | was planning to write a highly
intelligent program that would be able to reconstruct files by searching for blocks that looked
similar to expected blocks (based on an old backup, or other rules). The grep in the name was in
anticipation that the quote from the ext3 developer was true: | was preparing for the need to
work with sets of blocks, each set corresponding to a search pattern and weighted with a
likeliness, upon which then one would have to work with set operators in order to reduce the
number of blocks and assign them to files, and give them their order. However, nothing like it
turned out to be needed. Nevertheless, | kept the name ext3grep because someone might want
to add a true grep-like functionality to the program (at this moment it's grep-functionality is
limited to fixed strings, printing matching block numbers to standard output).

How Does EXT3 Store Files?

Block sizes

The content of files is stored in contiguous blocks of 4096 bytes (the actual size depends on
command line parameters passed to mke2fs when the file system was first created and can be
1024, 2048 or 4096 bytes). A harddisk is a "block device", meaning that every I/O is done in
terms those blocks; one can only read/write an integral number of a blocks at a time. This doesn't
necessarily mean that the minimum size of a contiguous file fragment is of the same size
(although it can only be smaller), but in practise it is. In fact, the program will not work if the
fragment size is unequal the block size.

The actual block size, as well as the actual fragment size, are stored in the superblock and can be
retrieved with the option - -superblock. For example,

$ ext3grep $IMAGE --superblock | grep 'size:’
Block size: 4096
Fragment size: 4096

Here IMAGE is an environment variable that was set to the name of the device (or a copy thereof
made with dd) of the partition holding the file system. For example /dev/sdd2 (in general, any of
the device names as returned by the command df under the heading "Filesystem"). Normally
only root can read devices directly, but you can (temporarily) make them readable by you, of
course, or make a backup image with dd. Note that, for example, /dev/sdd is NOT a partition
(note the missing digit) and will not contain usable data for our purpose.

#1

2008-03-12 http://www.xs4all.nl/~carlol7/howto/undelete_ext3.html

E R A VIV PN MV U

you ever want to make a copy of block number N, you could do:

$ dd if=$IMAGE bs=4096 count=1 skip=$N of=block.$N

Where N runs from 0 till (but not including) the number of blocks as stored in the superblock. For
example,

$ ext3grep $IMAGE --superblock | grep 'Blocks count:'
Blocks count: 2441824

Having any block number, one can print information about it by using the command line option
--block. For example,

$ ext3grep $IMAGE --1s --block 600

[...]

Group: 0

Block 600 is Allocated. It's inside the inode table of group @ (inodes [1 - 33>).

$ ext3grep $IMAGE --1s --block 1109

[...1

Group: 0

Block 1109 is a directory. The block is Allocated

.-- File type in dir_entry (r=regular file, d=directory, l=symlink)
| .-- D: Deleted ; R: Reallocated

Indx Next | Inode | Deletion time Mode File name
---------------- data-from-inode------+-----------f=========
0 1d 2 drwxr-xr-x
1 end d 2 drwxr-xr-x ..
2 3d 11 D 1202351093 Thu Feb 7 03:24:53 2008 drwxr-xr-x lost+found
3 end d 195457 D 1202352103 Thu Feb 7 03:41:43 2008 drwxr-xr-x carlo

The superblock

The superblock isn't really a block. It's size is always 1024 bytes and the first superblock starts at
offset 1024. Thus, if the block size is 1024 then the superblock is block 1, but if the block size is
2048 or 4096, then the superblock is part of block 0. There are multiple backup copies elsewhere
on the disk. ext3grep assumes that the first superblock is not corrupted and does not attempt to
find or read the backup copies.

One could read the contents of the first superblock with dd as follows:

$ dd if=$IMAGE bs=1024 skip=1 count=1 of=superblock

The meaning of each byte in the superblock is given in table 1.

2008-03-12 http://www.xs4all.nl/~carlol7/howto/undelete_ext3.html

Bytes type Description
0..3 _le32 Inodes count
4.7 _le32 Blocks count
8. 11 _le32 Reserved blocks count
12 .15 _le32 Free blocks count
16 ..19 _le32 Free inodes count
20..23 _le32 First data block
24 .. 27 _le32 Block size
28 ..31 _le32 Fragment size
32..35 _le32 Number of blocks per group
36 .. 39 _le32 Number of fragments per group
40 .. 43 _le32 Number of inodes per group
44 ., 47 _ le32 Mount time
48 .. 51 _le32 Write time
52 ..53 _lels Mount count
54 ..55 _lels6 Maximal mount count
56 .. 57 _lels Magic signature
58 .. 59 _lel6 File system state
60 .. 61 _lel6 Behaviour when detecting errors
62 ..63 _lelé minor revision level
64 .. 67 _le32 Time of last check
68 .. 71 _le32 Max. time between checks
72 ..75 _le32 0sS
76 ..79 _le32 Revision level
80 .. 81 _lel6 Default uid for reserved blocks
82 ..83 _lel6 Default gid for reserved blocks
84 ..87 _le32 First non-reserved inode
88 .. 89 _lels Size of inode structure
90..91 _lel6 Block group number of this superblock
92 ..95 _le32 Compatible feature set
96 .. 99 _le32 Incompatible feature set
100..103 | _le32 Readonly-compatible feature set
104 ..119 | _ u8[16] | 128-bit uuid for volume
120..135 |char[16] | Volume name
136 .. 199 | char[64] | Directory where last mounted
200..203 | _le32 For compression
204 _u8 Number of blocks to try to preallocate
205 _u8 Number to preallocate for dirs
206 .. 207 | _lel6 Per group descriptors for online growth
208 ..223 | _u8[16] | uuid of journal superblock
224 ..227 | _le32 Inode number of journal file
228 ..231 _le32 Device number of journal file
232..235 | _le32 Start of list of inodes to delete
236 .. 251 | _le32[4] | HTREE hash seed
252 _us8 Default hash version to use
253 ..255 Reserved
256 ..259 | _le32 Default mount options
260..263 | _le32 First metablock block group
264 ..1023 Reserved

The C-struct for the superblock is given in the header file /usr/include/linux/ext3_fs.h and
was used to create table 1. The data of the unsigned integers is stored on disk in Little Endian
format. On linux that means that _ le32 isin fact an uint32_t and _ 1el6 is equal to uint16_t.

Groups

Each ext3 file system is devided into groups, with a fixed number of blocks per group, except the
last group which contains the remaining blocks. The number of blocks per group is given in the
superblock, ie

2008-03-12

$ exTsgrep $LMAUE --SUPErDLOCK | grep "BLOCKS per group-
Blocks per group: 32768

Each group uses one block as a bitmap to keep track of which block inside that group is allocated
(used); thus, there can be at most 4096 * 8 = 32768 normal blocks per group.

Another block is used as bitmap for the number of allocated inodes. Inodes are data structures of
128 bytes (they can be extended in theory; the real size is given in the superblock once again)
that are stored in a table, (4096 / 128 = 32 inodes per block) in each group. Having at most
32768 bits in the bitmap, we can conclude that there will be at most 32768 inodes per group,
and thus 32768 / 32 = 1024 blocks in the inode table of each group. The actual size of the inode
table is given by the actual number of inodes per group, which is also stored in the superblock.

$ ext3grep $IMAGE --superblock | egrep 'Size of inode|inodes per group'
Number of inodes per group: 16288
Size of inode structure: 128

The block numbers of both bitmaps and the start of the inode table is given in the "group
descriptor table", which resides in the block following the superblock; thus, block 1 or block 2
depending on the size of a block. This group descriptor table exists of a series of consecutive
ext3_group_desc structs, also defined in /usr/include/linux/ext3_fs.h, see table 2.

Table 2. A group descriptor

Bytes type Description
0.3 _ le32 | Blocks bitmap block
4.7 __le32 [Inodes bitmap block
8..11 | _le32 | Inodes table block

12 ..13 | _lel6 | Free blocks count

14 ..15 | _lel6 | Free inodes count

16 ..17 | __lel6 | Directories count

18 ..31 Reserved

Since the size of this struct is padded to a power of 2, 32 bytes, there fit precisely an integral
number of descriptors in a block. Therefore the table is contiguous even when spanning multiple
blocks. Note that one block of 4096 bytes is already capable of holding 128 group descriptors,
each of which can store 32768 blocks— thus only a partition larger than 16 GB will use more than
one block for the group descriptor table.

The content of the table is printed by ext3grep if no action or group is specified on the command
line. For example,

$ ext3grep $IMAGE

No action specified; implying --superblock.

[...1]

Number of groups: 75

Group 0O: block bitmap at 598, inodes bitmap at 599, inode table at 600
4 free blocks, 16278 free inodes, 1 used directory

Group 1: block bitmap at 33366, inodes bitmap at 33367, inode table at 33368
30510 free blocks, 16288 free inodes, @ used directory

[...1

Group 74: block bitmap at 2424832, inodes bitmap at 2424833, inode table at 2424834
16481 free blocks, 16288 free inodes, 0 used directory

[...1]

Inodes

The inodes in the inode table of each group contain meta data for each type of data that the file
system can store. This type might be a symbolic link, in which case only the inode is sufficient, it
might be a directory, a file, a FIFO, a UNIX socket and so on. In the case of files and directories the
real data is stored in file system blocks outside the inode. The first 12 block numbers are stored in
the inode, if more blocks are needed, then then the inode points to an indirect block: a block with
more block numbers that contain data. Subsequently the inode can store a double indirect block
and a triple indirect block. The structure of an inode is given in table 3.

http://www.xs4all.nl/~carlol7/howto/undelete_ext3.html

#4

2008-03-12

Bytes type Description
0.1 _lel6 File mode
2.3 _lel6 Low 16 bits of Owner uid
4.7 _le32 Size in bytes
8. 11 _le32 Access time
12..15 _le32 Creation time
16 ..19 _le32 Modification time
20..23 _le32 Deletion Time
24 .. 25 _lel6 Low 16 bits of Group Id
26 .. 27 _lele Links count
28 ..31 _le32 Blocks count
32..35 _le32 File flags
36 .. 39 linux1 OS dependent 1
40 ..99 _ 1e32[15] | Pointers to blocks
100..103 | _le32 File version (for NFS)
104 ..107 | _le32 File ACL
108 .. 111 | _le32 Directory ACL
112..115| _le32 Fragment address
116 .. 127 | linux2 0S dependent 2

The C-struct for the inode, struct ext3_inode, is given in the header file
/usr/include/linux/ext3_fs.h and was used to create table 3. That same header file also
defines a number of constants in the form of macros that should be used to access the data. For

example, the struct member that is stored in bytes 40 to 99 is i_block, it's size is EXT3_N_BLOCKS

32-bit block numbers. i_block[EXT3_IND BLOCK] points to (contains the block number of) an
indirect block if one exists. i_block[EXT3_DIND_BLOCK] to a double indirect block and

i_block[EXT3_TIND_BLOCK] to a tripple indirect block. Basically, every constant has it's macro, see

the header file for more details. ext3grep uses i_reserved1 to store the inode number, so that
printing an ext3_inode struct in gdb shows which inode it really is.

The superblock shows how many inodes exist in total, and how many inodes there are per group.

This allows one to calculate the number of groups. Because the inodes are stored in their
respective inode tables per group, one first has to determine the group that an inode number
belongs to. Because inodes start to count at 1, the formula to convert an inode number to the
group it belongs to is:

group = (inode number - 1) / inodes_per_group

This gives the correct inode table. To find the index of the inode in this table we subtract the
inode number of the first inode in the table from our inode number:

index = inode_number - (group * inodes_per_group + 1)
Note that this index also determines the corresponding bit in the inodes bitmap.

As such, groups have been made transparent: every inode can be addressed with a number in
the contiguous range [1, number_of inodes], where the number of inodes is given by:

http://www.xs4all.nl/~carlol7/howto/undelete_ext3.html

$ ext3grep $IMAGE --superblock | grep 'Inodes count'
Inodes count: 1221600

In some case you might want to know which block in the file system belongs to the inode table
that stores a particular inode. This can be retrieved with the command line option
--inode-to-block, for example:

$ ext3grep $IMAGE --inode-to-block 2

Inode 2 resides in block 600 at offset ©x80.

Inode number 2 (the macro EXT3_ROOT _INO in ext3_fs.h) is always used for the root of the
partition: it's type is a directory. Of all other special inodes we only use EXT3_JOURNAL_INO
(number 8).

Having the inode number, one can print it's contents with ext3grep, for example:

$ ext3grep $IMAGE --inode 2 --print
Number of groups: 75
Loading group metadata... done

Hex dump of inode 2:
0000 | ed 41 00 00 00 10 00 00 97 6f

0010 | 68 6c aa 47 00 00 00 00 0O 00
0020 | 60 00 G0 60 02 00 00 00 55 04
0030 | 60 00 00 00 00 00 60 00 00 00

0050 | 00 00 00 00 00 00 60 00 00 00
0060 | 00 00 00 00 00 00 60 00 00 00
0070 | 60 00 G0 00 0O 0O 00 00 00 00

|
|
|
0040 | 00 00 60 60 00 00 00 00 00 60
|
|
I

Inode is Allocated
Group: ©
Generation Id: @
uid / gid: 06 / ©

#5

2008-03-12

size: 4096
num of links: 2
sectors: 8 (--> 0@ indirect blocks).

Inode Times:

Accessed: 1202352023 = Thu Feb 7 03:40:23 2008
File Modified: 1202351112 = Thu Feb 7 03:25:12 2008
Inode Modified: 1202351112 = Thu Feb 7 03:25:12 2008

Deletion time: ©

Direct Blocks: 1109
[...]
Inode 2 is directory "".
Directory block 1109:
.-- File type in dir_entry (r=regular file, d=directory, l=symlink)
.-- D: Deleted ; R: Reallocated

|
Indx Next | Inode | Deletion time Mode File name
+ R data-from-inode------4-----------4=========
0 1d 2 drwxr-xr-x
1 end d 2 drwxr-xr-x ..
2 3d 11 D 1202351093 Thu Feb 7 03:24:53 2008 drwxr-xr-x lost+found
3 end d 195457 D 1202352103 Thu Feb 7 03:41:43 2008 drwxr-xr-x carlo

http://www.xs4all.nl/~carlol7/howto/undelete_ext3.html

As you see, ext3grep first dumps the hexadecimal content of the inode table; then interprets it
and prints the struct members, ending with the line Direct Blocks: 1109. It then detects that
this block is a directory (which can also be seen in the mode field of the inode) and therefore
continuous with listing this block as directory.

Regular Files

If an inode represents a regular file, then the blocks it refers to simply contain the data of the file.
If the size of a file is not an integral number of times the block size, than the excess bytes in the
last block will be zeroed out (at least, on linux).

Symbolic links

The value of a symbolic link is a string: the pathname to it's target. The length of the string is
given in i_size. If i_blocks is zero, then i_block does not contain block numbers, but is used to
store the string directly. However, if the name of the target is longer than fits in i_block, then

i blocks will be non-zero and i_block[@] will point to a block containing the target name.

Directories

If an inode represents a directory then its blocks are (singly) linked lists of ext3_dir_entry_ 2 data
structures. Each block is self-contained: no dir entry points outside the block. The first block will
always start with the dir entries for "." and "..".

Table 4. A Directory Entry
Bytes type Description

0..3|__le32 | Inode number

4 ..5 | _lel6 | Directory entry length

6 _u8 Name length
7 _u8 File Type
8 char[] | File-, symlink- or directory name

Using the options --1s --inode $N, ext3grep lists the contents of each directory block of inode
N. For example, to list the root directory of a partition:

$ ext3grep $IMAGE --ls --inode 2
Number of groups: 75
Loading group metadata... done
Minimum / maximum journal block: 1115 / 35026
Loading journal descriptors... done
Journal transaction 4381435 wraps around, some data blocks might have been lost of
Number of descriptors in journal: 30258; min / max sequence numbers: 4379495 / 4382
Inode is Allocated
Loading md5.ext3grep.stage2... done
The first block of the directory is 1109.
Inode 2 is directory "".
Directory block 1109:
.-- File type in dir entry (r=regular file, d=directory, l=symlink)
| .-- D: Deleted ; R: Reallocated

Indx Next | Inode | Deletion time Mode File name
---------------- data-from-inode------+-----------+=========
[¢] 1d 2 drwxr-xr-x
1 endd 2 drwxr-xr-x ..
2 3d 11 D 1202351093 Thu Feb 7 03:24:53 2008 drwxr-xr-x lost+found
3 end d 195457 D 1202352103 Thu Feb 7 03:41:43 2008 drwxr-xr-x carlo

this transaction.
264

Subsequently, one could use ext3grep --ls --inode 195457 to list directory carlo, and so on.

Note that ext3grep prints all directory entries, deleted not. There are two ways that one can see
that a directory is deleted: firstly, it's inode will have a non-zero Deletion Time, secondly the dir
entry might be taken out of the linked list by skipping it; the "Directory Entry Length", bytes 4
and 5 of each directory entry, basically 'point' to the next entry, or to the byte directly following
the block if there are no other dir entries. In the listing of ext2grep the address of the dir entries
has has been replaced by an artificial index (in the first column) and the "Directory Entry Length"
is replaced with the column called Next, which either points to the next entry or contains end
when there are no other dir entries. In the above example, 0 is the first entry, 1 is the next and
last entry. The entries with index 2 and 3 are skipped. Howeuver, it is still visible that entry 2 used
to point to entry 3. In fact, entries 2 and 3 are deleted at the same time by changing the
"Directory Entry Length" of entry 1 such that it did not 'point' to entry 2 anymore, but to the end
of the block.

Because ext3grep prints also deleted entries, it is very well possible that the SAME entry occurs
multiple times. In particular, if a file is moved, a duplicate remains that will still be visible. le,

#6

2008-03-12

$ ext3grep $IMAGE --ls --inode 195457 | grep '\.viminfo$'

7 8 r 201434 D 1202351096 Thu Feb 7 03:24:56 2008 rrw-r--r-- .viminfo
18 19 r 195995 D 1202351097 Thu Feb 7 ©3:24:57 2008 .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 ©3:25:11 2008 .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 ©3:25:11 2008 .viminfo
18 19 r 195995 D 1202351097 Thu Feb 7 03:24:57 2008 .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 03:25:11 2008 rrw-r--r-- .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 03:25:11 2008 rrw-r--r-- .viminfo
18 19 r 195995 D 1202351097 Thu Feb 7 03:24:57 2008 rrw------- .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 ©3:25:11 2008 rrw-r--r-- .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 ©3:25:11 2008 rrw-r--r-- .viminfo
18 19 r 195995 D 1202351097 Thu Feb 7 ©3:24:57 2008 rrw---- .viminfo
18 19 r 195995 D 1202351097 Thu Feb 7 03:24:57 2008 .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 03:25:11 2008 .viminfo
18 19 r 195995 D 1202351097 Thu Feb 7 03:24:57 2008 .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 03:25:11 2008 .viminfo
18 19 r 195995 D 1202351097 Thu Feb 7 03:24:57 2008 .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 03:25:11 2008 .viminfo
18 19 r 195995 D 1202351097 Thu Feb 7 ©3:24:57 2008 .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 ©3:25:11 2008 .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 03:25:11 2008 .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 03:25:11 2008 .viminfo
18 19 r 195995 D 1202351097 Thu Feb 7 03:24:57 2008 .viminfo
18 19 r 195995 D 1202351097 Thu Feb 7 03:24:57 2008 .viminfo
18 19 r 195995 D 1202351097 Thu Feb 7 03:24:57 2008 .viminfo
18 19 r 195995 D 1202351097 Thu Feb 7 ©3:24:57 2008 .viminfo
18 19 r 195995 D 1202351097 Thu Feb 7 ©3:24:57 2008 .viminfo
18 19 r 197221 D 1202351110 Thu Feb 7 ©3:25:10 2008 .viminfo
18 19 r 197221 D 1202351110 Thu Feb 7 ©3:25:10 2008 .viminfo
18 19 r 197221 D 1202351110 Thu Feb 7 ©3:25:10 2008 .viminfo
18 19 r 197221 D 1202351110 Thu Feb 7 ©3:25:10 2008 .viminfo
17 19 r 197221 D 1202351110 Thu Feb 7 ©3:25:10 2008 .viminfo
17 19 r 197221 D 1202351110 Thu Feb 7 ©3:25:10 2008 .viminfo
17 19 r 197221 D 1202351110 Thu Feb 7 ©3:25:10 2008 .viminfo
18 19 r 195993 D 1202351097 Thu Feb 7 ©3:24:57 2008 .viminfo
18 19 r 195981 D 1202351097 Thu Feb 7 ©3:24:57 2008 .viminfo
18 19 r 195993 D 1202351097 Thu Feb 7 03:24:57 2008 .viminfo
18 19 r 195981 D 1202351097 Thu Feb 7 ©3:24:57 2008 .viminfo
18 19 r 195993 D 1202351097 Thu Feb 7 03:24:57 2008 .viminfo
18 19 r 195987 D 1202351097 Thu Feb 7 03:24:57 2008 .viminfo
18 19 r 195993 D 1202351097 Thu Feb 7 03:24:57 2008 .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 03:25:11 2008 .viminfo
18 19 r 195993 D 1202351097 Thu Feb 7 03:24:57 2008 .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 ©3:25:11 2008 .viminfo
18 19 r 195993 D 1202351097 Thu Feb 7 03:24:57 2008 .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 ©3:25:11 2008 .viminfo
18 19 r 195993 D 1202351097 Thu Feb 7 03:24:57 2008 .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 03:25:11 2008 .viminfo
18 19 r 195993 D 1202351097 Thu Feb 7 03:24:57 2008 .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 03:25:11 2008 .viminfo
18 19 r 195993 D 1202351097 Thu Feb 7 03:24:57 2008 .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 ©3:25:11 2008 .viminfo
18 19 r 195993 D 1202351097 Thu Feb 7 ©3:24:57 2008 .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 ©3:25:11 2008 .viminfo
18 19 r 195995 D 1202351097 Thu Feb 7 ©3:24:57 2008 .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 03:25:11 2008 .viminfo
18 19 r 195995 D 1202351097 Thu Feb 7 03:24:57 2008 .viminfo
18 19 r 195994 D 1202351111 Thu Feb 7 03:25:11 2008 .viminfo
18 19 r 195995 D 1202351097 Thu Feb 7 ©3:24:57 2008 .viminfo
18 19 r 195993 D 1202351097 Thu Feb 7 ©3:24:57 2008 .viminfo
17 19 r 197221 D 1202351110 Thu Feb 7 ©3:25:10 2008 .viminfo

http://www.xs4all.nl/~carlol7/howto/undelete_ext3.html

In order to understand this, the following remarks.

Firstly, these duplicated entries come mostly from duplicated directory blocks, which is already
apparent from the index number of the entries: if they were all from the same block then all index
numbers would have been different. Of course, without piping the output to grep it would be
clear that each entry belongs to a different directory block, but that output is too much to show
here.

Secondly, you have to realize that only the inode number, the file type in the third column and
the file name is data from the dir entry itself. The Deletion time, and the Mode column are
extracted from the current data in the corresponding inode. However, that inode could have been
reused long ago by another file and the data it contains would not be related anymore to this dir
entry. This is clearly the case in the above example because it is certain that all those .viminfo files
weren't deleted on the same day! In a few case it can be detected that an inode has been
reallocated (reused): if it is still in use (that can't be by this deleted dir entry), or when the file
type in the inode differs from the file type in the dir entry. In those cases the fifth column shows
an 'R' instead of a 'D', and the content of the inode is not shown. However, because such entries
show little information of use, they are normally suppressed. If you want to see entries with known
reallocated inodes, you have to add the command line option --reallocated. Moreover,
sometimes the inode number in the dir entry itself is zeroed. Such entries are obviously useless as
well and therefore also suppressed. In order to show them use the command line option
--zeroed-inodes

It is possible to apply filters to the output of --1s. An overview of the available filters is given in
the output of the - -help option:

2008-03-12 http://www.xs4all.nl/~carlol7/howto/undelete_ext3.html

$ extsgrep »1MAuE --neLp
[...1]
Filters:
--group grp Only process group 'grp'.
--directory Only process directory inodes.
--after dtime Only entries deleted on or after 'dtime'.
--before dtime Only entries deleted before 'dtime’.
--deleted Only show/process deleted entries.
--allocated Only show/process allocated inodes/blocks.
--unallocated Only show/process unallocated inodes/blocks.
--reallocated Do not suppress entries with reallocated inodes.
Inodes are considered 'reallocated' if the entry
is deleted but the inode is allocated, but also when
the file type in the dir entry and the inode are
different.
--zeroed-inodes Do not suppress entries with zeroed inodes. Linked
entries are always shown, regardless of this option.
--depth depth Process directories recursively up till a depth
of ‘'depth'.
[...1]

In order to easily determine sensible values for --after and --before the action
--histogram=dtime was added. This command line option causes ext3grep to print a histogram of
time versus number of deleted inodes. If you delete a large number of files at once, for example
with rm -rf, then it should be easy to determine a time window within which the deletion took
place. For example, here | zoomed in on my personal disaster where | deleted a little over fifty
thousand files from my home directory:

$ ext3grep $IMAGE --histogram=dtime --after=1202351086 --before=1202351129
Only show/process deleted entries if they are deleted on or after Thu Feb 7 03:24:46 2008 and before Thu Feb 7 03:25:29 2008.

Number of groups: 75

Minimum / maximum journal block: 1115 / 35026
Loading journal descriptors... done

Journal transaction 4381435 wraps around, some data blocks might have been lost of this transaction.
Number of descriptors in journal: 30258; min / max sequence numbers: 4379495 / 4382264

Only show/process deleted entries if they are deleted on or after 1202351086 and before 1202351129.
Only showing deleted entries.
Thu Feb 7 ©3:24:46 2008 1202351086

0
Thu Feb 7 03:24:47 2008 1202351087 1
Thu Feb 7 ©3:24:48 2008 1202351088 0
Thu Feb 7 ©3:24:49 2008 1202351089 0
Thu Feb 7 ©3:24:50 2008 1202351090 0
Thu Feb 7 ©3:24:51 2008 1202351091 0
Thu Feb 7 ©3:24:52 2008 1202351092 0
Thu Feb 7 ©3:24:53 2008 1202351093 705 =============
Thu Feb 7 03:24:54 2008 1202351094 1698
Thu Feb 7 ©3:24:55 2008 1202351095 2320
Thu Feb 7 ©3:24:56 2008 1202351096 3652
Thu Feb 7 ©3:24:57 2008 1202351097 3332
Thu Feb 7 ©3:24:58 2008 1202351098 2014
Thu Feb 7 ©3:24:59 2008 1202351099 1160
Thu Feb 7 ©3:25:00 2008 1202351100 4188
Thu Feb 7 ©3:25:01 2008 1202351101 2480
Thu Feb 7 ©3:25:02 2008 12023511602 1945
Thu Feb 7 ©3:25:03 2008 1202351103 1471
Thu Feb 7 03:25:04 2008 1202351104 2724
Thu Feb 7 ©3:25:05 2008 1202351105 3090
Thu Feb 7 ©3:25:06 2008 1202351106 3360
Thu Feb 7 ©3:25:07 2008 1202351107 4902
Thu Feb 7 ©3:25:08 2008 1202351108 698 —============
Thu Feb 7 ©3:25:09 2008 12023511609 1612
Thu Feb 7 03:25:10 2008 1202351110 4547
Thu Feb 7 03:25:11 2008 1202351111 2651
Thu Feb 7 03:25:12 2008 1202351112 1513
Thu Feb 7 03:25:13 2008 1202351113 0
Thu Feb 7 03:25:14 2008 1202351114 0
Thu Feb 7 ©3:25:15 2008 1202351115 0
Thu Feb 7 ©3:25:16 2008 1202351116 0
Thu Feb 7 03:25:17 2008 1202351117 1
Thu Feb 7 03:25:18 2008 1202351118 0
Thu Feb 7 03:25:19 2008 1202351119 0
Thu Feb 7 03:25:20 2008 1202351120 0
Thu Feb 7 03:25:21 2008 1202351121 0
Thu Feb 7 ©3:25:22 2008 1202351122 0
Thu Feb 7 ©3:25:23 2008 1202351123 0
Thu Feb 7 ©3:25:24 2008 1202351124 0
Thu Feb 7 ©3:25:25 2008 1202351125 0
Thu Feb 7 ©3:25:26 2008 1202351126 0
Thu Feb 7 ©3:25:27 2008 1202351127 0
Thu Feb 7 03:25:28 2008 1202351128 0
Thu Feb 7 ©3:25:29 2008 1202351129
Totals:

1202351086 - 1202351128 50064

It is important to set a good value for - -after before recovering all files, or way too many files will
be "recovered".

The Journal

The journal is a file existing of a fixed number of blocks. It's inode is EXT3_JOURNAL_INO, which is
usually 8. The actual inode can also be found in the superblock:

$ ext3grep $IMAGE --superblock | grep 'Inode number of journal file'
Inode number of journal file: 8

2008-03-12

http://www.xs4all.nl/~carlol7/howto/undelete_ext3.html

$ ext3grep $IMAGE --print --inode 8

Number of groups: 75

Loading group metadata... done

Minimum / maximum journal block: 1115 / 35026

Loading journal descriptors... done

Journal transaction 4381435 wraps around, some data blocks might have been lost of
Number of descriptors in journal: 30258; min / max sequence numbers: 4379495 / 4382

Hex dump of inode 8:
0000 | 80 81 00 00 0O OO OO 68 OO 00 00 00 62 07 57 46

0010 | 62 07 57 46 00 00 60 00 ©O 60 01 0O 10 01 04 00
0020 | 60 00 G0 60 08 00 00 00 5b 64 00 00 5c 04 00 00
0030 | 5d 04 00 00 5e 04 00 00 5f 04 00 00 60 04 00 00

|
|
|
0040 | 61 04 00 00 62 04 00 00 63 04 00 00 64 04 00 00
|
|
I

0050 | 65 04 00 00 66 04 00 00 67 04 00 00 68 08 00 0O
0060 | 00 00 G0 00 00 00 00 00 00 00 00 00 00 00 00 00
0070 | 00 00 G0 00 0O 0O 00 00 0O 0O G0 0O 00 00 00 00

Inode is Allocated

Group: 0

Generation Id: ©

uid / gid: @ / 0

mode: rrw-------

size: 134217728

num of links: 1

sectors: 262416 (--> 34 indirect blocks).

Inode Times:

Accessed: (¢}

File Modified: 1180108642 = Fri May 25 17:57:22 2007
Inode Modified: 1180108642 = Fri May 25 17:57:22 2007
Deletion time: ©

Direct Blocks: 1115 1116 1117 1118 1119 11260 1121 1122 1123 1124 1125 1126
Indirect Block: 1127
Double Indirect Block: 2152

this transaction.
264

where you can see that the size of my journal is 134217728 bytes, or 32768 blocks. The first 12
blocks are listed directly in the inode: blocks 1115 - 1126. Then an indirect block is placed in
1127. This indirect block can contain 1024 block numbers each of which follow the indirect block
directly (1128 - 2151). Then the inode refers to a double indirect block containing 31 block
numbers of additional indirect blocks. The total number of (double/tripple) indirect blocks is
calculated to be 34 (using the fact that a sector is 512 byte). Therefore, if everything would be
stored contiguously, the last block of the journal would be 1115 + 32768 + 34 -1 = 33916.
However, the journal didn't fit entirely in group 0, so the last blocks are in group 1 and the header
of group 1 (most notably it's inode table) is inserted somewhere between the journal blocks,
causing the last block to be 35025. On top of this, there could be bad blocks anywhere in
between as well. Therefore, the correct way to approach the journal is in terms of 'journal block
numbers'.

The first block of the journal file (block 1115 in the above example) contains the ‘journal
superblock'. It's structure is defined in /usr/include/linux/jbd.h as journal_superblock_t. It
can be printed with:

$ ext3grep $IMAGE --journal --superblock
Journal Super Block:

Signature: 0x3225106840

Block type: Superblock version 2

Sequence Number: ©

Journal block size: 4096

Number of journal blocks: 32768

Journal block where the journal actually starts: 1

Sequence number of first transaction: 4382265

Journal block of first transaction: ©

Error number: 0

Compatible Features: ©

Incompatible features: 1

Read only compatible features: @

Journal UUID: Oxe3 0x88 0xd9 0x09 0x94 Oxca 0x43 0x95 0x9b Ox53 Oxac Ox2c Oxd8 0Oxed
Number of file systems using journal: 1

Location of superblock copy: ©

Max journal blocks per transaction: 0

Max file system blocks per transaction: 0

IDs of all file systems using the journal:

1. Ox00 0x00 Ox00 O0x00 Ox00 Ox00 Ox00 Ox00 Ox00 OxO00 OxO00 Ox00 Ox00 Ox00 OxO00 0x00

Minimum / maximum journal block: 1115 / 35026

Loading journal descriptors... done

Journal transaction 4381435 wraps around, some data blocks might have been lost of
Number of descriptors in journal: 30258; min / max sequence numbers: 4379495 / 4382

0x3d 0x25

this transaction.
264

Here you can see that the journal actually starts in Journal Block Number 1, and the last block is
Journal Block Number 32768. These are thus not the same as the file system block numbers. One
can find the real block number with, for example,

$ ext3grep $IMAGE --journal --journal-block 1
[...1

Group: 0

Block 1116 belongs to the journal.

[...1]

which reveals that Journal Block Number 1 is file system block 1116.

#9

2008-03-12 http://www.xs4all.nl/~carlol7/howto/undelete_ext3.html #10

end of the journal is reached, writing continuous at the start, wrapping around. However, if a file
system is cleanly unmounted then the next mount writing always starts at the beginning (I
think).

A single transaction exist of a one or more "Descriptors". The last descriptor of a transaction is a
"Commit Block", signaling that the transaction has been closed succesfully and the data in the
previous descriptors of that transaction has been written to disk. There are two other types of
descriptors: revoke blocks and blocks containing "tags". A revoke block is filled with block
numbers that should be (or are) unallocated by this transaction. A tag is a structure that assigns
subsequent journal blocks (not file system blocks!) to file system blocks: the following journal
blocks contain the data that should (have been) written to the given file system block.

That makes "tags" in particular interesting for us: they contain copies of data that was written to
disk in the past, including old inodes.

Manual recovery example

In the following example we will manually recover a small file. Only partial output is given in order
to save space and to make the example more readable.

Using ext3grep $IMAGE --ls --inode we find the name of the file that we want to recover:

$ ext3grep $IMAGE --1s --inode 2 | grep carlo
3 end d 195457 D 1202352103 Thu Feb 7 03:41:43 2008 drwxr-xr-x carlo

$ ext3grep $IMAGE --ls --inode 195457 | grep ' bin$' | head -n 1
34 35 d 309540 D 1202352104 Thu Feb 7 03:41:44 2008 drwxr-xr-x bin

$ ext3grep $IMAGE --ls --inode 309540 | grep start_azureus
9 10 r 309631 D 1202351093 Thu Feb 7 03:24:53 2008 rrwxr-xr-x start_azureus

Obviously, inode 309631 is erased and we have no block numbers for this file:

$ ext3grep $IMAGE --print --inode 309631
[...]

Inode is Unallocated

Group: 19

Generation Id: 2771183319

uid / gid: 1000 / 1000

mode: rrwxr-xr-x

size: 0

num of links: 0O

sectors: 0 (--> 0 indirect blocks).

Inode Times:

Accessed: 1202350961 = Thu Feb 7 03:22:41 2008
File Modified: 1202351093 = Thu Feb 7 ©3:24:53 2008
Inode Modified: 1202351093 = Thu Feb 7 ©3:24:53 2008
Deletion time: 1202351093 = Thu Feb 7 03:24:53 2008

Direct Blocks:

Therefore, we will try to look for an older copy of it in the journal. First, we find the file system
block that contains this inode:

$ ext3grep $IMAGE --inode-to-block 309631 | grep resides
Inode 309631 resides in block 622598 at offset 0xf00.

Then we find all journal descriptors referencing block 622598:

$ ext3grep $IMAGE --journal --block 622598
[...]

Journal descriptors referencing block 622598:
4381294 26582
4381311 28693
4381313 28809
4381314 28814
4381321 29308
4381348 30676
4381349 30986
4381350 31299
4381374 32718
4381707 1465
4381709 2132
4381755 2945
4381961 4606
4382098 6073
4382137 6672
4382138 7536
4382139 7984
4382140 8931

This means that the transaction with sequence number 4381294 has a copy of block 622598 in
block 26582, and so on. The largest sequence number, at the bottom, should be the last data
written to disk and thus block 8931 should be the same as the current block 622598. In order to
find the last non-deleted copy, one should start at the bottom and work upwards.

If you try to print such a block, ext3grep recognizes that it's a block from an inode table and will
print the contents of all 32 inodes in it. We only wish to see inode 309631 however; so we use a
smart grep:

$ ext3grep $IMAGE --print --block 8931 | grep -Al5 'Inode 309631’
-------------- Inode 309631-----------------------

Generation Id: 2771183319

uid / gid: 1000 / 1000

mode: rrwxr-xr-x

2008-03-12

num of links: 0O
sectors: @ (--> 0@ indirect blocks).

Inode Times:

Accessed: 1202350961 = Thu Feb 7 03:22:41 2008
File Modified: 1202351093 = Thu Feb 7 ©3:24:53 2008
Inode Modified: 1202351093 = Thu Feb 7 ©3:24:53 2008
Deletion time: 1202351093 = Thu Feb 7 03:24:53 2008

Direct Blocks:

http://www.xs4all.nl/~carlol7/howto/undelete_ext3.html

This is indeed the same as we saw in block 622598. Next we look at smaller sequence numbers
until we find one with a 0 Deletion time. The first one that we find (bottom up) is block 6703:

$ ext3grep $IMAGE --print --block 6073 | grep -Al5 'Inode 309631'
-------------- Inode 309631--------------------uu-

Generation Id: 2771183319

uid / gid: 1000 / 1000

mode: rrwxr-xr-x

size: 40

num of links: 1

sectors: 8 (--> 0 indirect blocks).

Inode Times:

Accessed: 1202350961 = Thu Feb 7 03:22:41 2008
File Modified: 1189688692 = Thu Sep 13 15:04:52 2007
Inode Modified: 1189688692 = Thu Sep 13 15:04:52 2007

Deletion time: ©

Direct Blocks: 645627

The above is automated and can be done much faster with the command line option
--show-journal-inodes. This option will find the block that the inode belongs to, then finds all
copies of that block in the journal, and subsequently prints only the requested inode from each of
these block (each of which contains 32 inodes, as you know), eliminating duplicates:

$ ext3grep $IMAGE --show-journal-inodes 309631

Number of groups: 75

Minimum / maximum journal block: 1115 / 35026

Loading journal descriptors... done

Journal transaction 4381435 wraps around, some data blocks might have been lost of
Number of descriptors in journal: 30258; min / max sequence numbers: 4379495 / 4382
Copies of inode 309631 found in the journal:

Generation Id: 2771183319

uid / gid: 1000 / 1000

mode: rrwxr-xr-x

size: @

num of links: @

sectors: @ (--> @ indirect blocks).

Inode Times:

Accessed: 1202350961 = Thu Feb 7 03:22:41 2008
File Modified: 1202351093 = Thu Feb 7 ©3:24:53 2008
Inode Modified: 1202351093 = Thu Feb 7 ©3:24:53 2008
Deletion time: 1202351093 = Thu Feb 7 03:24:53 2008

Direct Blocks:

Generation Id: 2771183319

uid / gid: 10600 / 1000

mode: rrwxr-xr-x

size: 40

num of links: 1

sectors: 8 (--> 0@ indirect blocks).

Inode Times:

Accessed: 1202350961 = Thu Feb 7 03:22:41 2008
File Modified: 1189688692 = Thu Sep 13 15:04:52 2007
Inode Modified: 1189688692 = Thu Sep 13 15:04:52 2007
Deletion time: ©

Direct Blocks: 645627

this transaction.
264

The file is indeed small: only one block. We copy this block with dd as shown before:

$ dd if=$IMAGE bs=4096 count=1 skip=645627 of=block.645627
1+0 records in

1+0 records out

4096 bytes (4.1 kB) copied, 0.0166104 seconds, 247 kB/s

and then edit the file to delete the trailing zeroes, or copy the first 40 bytes (the given size of the
file):

$ dd if=block.645627 bs=1 count=40 of=start_azureus
40+0 records in

40+0 records out

40 bytes (40 B) copied, 0.000105397 seconds, 380 kB/s

$ cat start_azureus
cd /usr/src/azureus/azureus
./azureus &

#11

2008-03-12 http://www.xs4all.nl/~carlol7/howto/undelete_ext3.html #12

Note that it is possible to see all descriptors of a given transaction. The transaction that we used
to recover this file was 4382098. The complete transaction can be seen with:

$ ext3grep $IMAGE --journal-transaction 4382098

[...]

Prev / Current / Next sequences numbers: 4382097 4382098 4382099
Transaction was NOT COMMITTED!

TAG: 6074=851971 6073=622598 6072=393218 6071=393395 6070=393231 6069=393409 6068=393240 6067=393371 6066=622596
REVOKE: 506451
TAG: 6056=393217 6057=1 6058=393273 6059=393232 6060=403879 6061=393216 6062=491520| 6063=506302 6064=0 6065=393219

Here you see, for example, the TAG 6072=393218, meaning that block 6072 contains a (old) copy
of block 393218. | don't know why it says that the transaction wasn't committed (that seems very
unlikely). Probably, the commit block was overwritten and this old journal transaction simply isn't
complete anymore.

Recovering files

Of course, it would be annoying to recover larger files, existing of many blocks this way; let alone
manually recovering thousands of files! Therefore all of the above can be automated. However, if
you recover 50,000 files then there is virtually no way to even check if it worked afterwards:
especially when MORE files were recovered than you really wanted; it will be hard to find back all
the junk. You really should take care to recover files as accurate as possible.

No such care seems necessary to recover a single file, you can just pass it's path to ext3grep:

$ ext3grep $IMAGE --restore-file carlo/bin/start_kvm
[...]
Restoring carlo/bin/start_kvm

$ cat carlo/bin/start_kvm
#! /bin/sh

cd /usr/src/qgt/src
./host-linux 192.168.2.4 &
cd /opt/kvm/winXPpro

sudo modprobe kvm_intel
sudo kvm -m 384 -hda vdisk6GB.img -cdrom /dev/cdrom -localtime -std-vga -net nic,vlan=0,model=rt18139 -net tap,vlan=0
#-snapshot # -daemonize
killall -9 host-linux

Note that this created the directory carlo/bin in the current directory, in order to be able to
restore this file. Also note that if carlo/bin/start_kvm already existed in the current directory
then it was not overwritten!

In order for this to work you will first have to pass stagel and stage2 of the disk analysis that
ext3grep will perform (see below).

It is possible to dump all file names that ext3grep can find, using the command line option
- -dump-names:

$ ext3grep $IMAGE --dump-names

carlo

carlo/.Trash

carlo/.Xauthority

carlo/.Xauthority-c

carlo/.Xauthority-1

carlo/.Xauthority-n

carlo/.alsaplayer

carlo/.alsaplayer/alsaplayer.m3u
carlo/.alsaplayer/config

[...1]

carlo/www/xcw/ .svn/tmp/wcprops
carlo/www/xcw/index. html
carlo/www/xmlwrapp-0.5.0.tar.gz

lost+found

lost+found/1st level admin borders (states_provinces)
lost+found/1st level admin names (states provinces)
lost+found/2002 - cloud cover (0-10%)

[...1]

The files that will end up in lost+found are files for which no directory could be found (but that
still had an inode copy in the journal). Most likely those are files that were deleted long ago and
can be disgarded anyway.

Once you are satisfied with the output of - -dump-names, you can replace - -dump-names with
--restore-all, which in effect will cause --restore-file to be called on every file name printed
by - -dump-names. As mentioned before, it is highly advisable to use a proper --after command
line option in order to avoid that ext3grep tries to recover files that are simply too old. Note that
at this moment the output of - -dump-names is unfiltered, and --restore-file (--restore-all)
only honors the - -after command line option.

For example,

$ time ext3grep $IMAGE --restore-all --after=1202351117
Only show/process deleted entries if they are deleted on or after Thu Feb 7 03:25:17 2008.
[...]

Loading md5.ext3grep.stage2... done

Not undeleting "carlo/.Trash" because it was deleted before 1202351117 (32767)

Not undeleting "carlo/.Xauthority" because it was deleted before 1202351117 (32767)
[...1]

Cannot find an undeleted inode for file "carlo/.azureus/logs/save/1176594823051 alerts_1.log".
[...]

Restoring carlo/bin/startx
[...]

real 0m3.079s

2008-03-12 http://www.xs4all.nl/~carlol7/howto/undelete_ext3.html #13

Sys Oml.744s

where carlo/bin/startx is the only file recovered. It was the /ast file that was deleted, and | set
the - -after value to one second before it was. Note that it's logical that it was the last file, since |
started X by executing this script; hence, it was "in use" until | rebooted.

Considering that it checked over 50,000 files from a in total 10 GB large partition, the 3.1 seconds
is extremely fast; this is caused by several factors: 1) The first time ext3grep is run, it does a full
analysis of the partition and writes the results to a cache file (in two steps, first stagel and then
stage2). These stages only need to be done once. 2) Since only one file had to be recovered, there
wasn't much disk access (besides, | have 4 GB of RAM -- so everything needed was already
cached). 3) | have a very fast cpu. It was using 100% cpu during those 3.1 seconds though.
Trying to restore many files mainly hangs on disk access, but is relatively still pretty fast (you can
just sit and wait for it).

Stage 1

The stage 1 cache file is written to DEVICE.ext3grep.stagel, where DEVICE is replaced with the
device name (ie, if $IMAGE is /dev/hda2, then DEVICE is hda2). There is little that can go wrong
with stage 1: it just scans the whole disk and finds all blocks that seem to contain a directory.

The format of the stagel cache file is:

$ cat md5.ext3grep.stagel

Stage 1 data for md5.

Inodes and directory start blocks that use it for dir entry '.'.
INODE : BLOCK [BLOCK ...]

2 : 1109 6592 9312

11 : 1110

195457 : 415744

195468 : 2916 4732 17783 403469
195469 : 403470

[...1]

929633 : 1885254

929659 : 1885280

Extended directory blocks.
1178

1179

1182

[...]

1884516

In the first part, the first column are inodes, followed by a space, followed by a colon, followed by
a space seperated list of block numbers that use that inode for a dir entry with name ".".
Obviously, there can only be one directory that uses this inode, so ext3grep has to determine
which of those block numbers is the last one that was the real one. The second part lists all block
numbers that contain extended directory blocks, that is, directory blocks that are not the first
block and do not contain the dir_entry with name ".". It is unknown which directory those belong
to without having the original inode. In stage 2 ext3grep will attempt to find out to which
directory they belong.

Stage 2

This stage, executed by the function init directories(), contains most heuristic code. First it
determines which blocks are the real directory start blocks, and then assigns each extended
directory block to one of those directories (see also TODO, below). As a result it is possible to
assign a path name to each (directory) inode, and assign a list of directory blocks to them. Finally,
this result is written to a cache file (DEVICE.ext3grep.stage2). In case something goes very
wrong here, you might be able to fix it by editing this file (removing incorrect-, or adding correct
block numbers), however, do not remove or add comments: ext3grep will get confused if you
change the file too much.

Superfluous hardlinks

Because inodes are reused, it happens often that an old directory entry (of a deleted file, orin a
deleted directory, or in an old directory block that is not used anymore) refers to an inode that is
now used by something else. If that something else is of the same type (both regular files) then
there is no way to distinguish it from a hardlink: two files using the same inode. As a result, a
recovery results in a lot of WRONG hardlinks.

In order to make it easier to clean these up, ext3grep provides the command line option
--show-hardlinks.

$ ext3grep $IMAGE --show-hardlinks
[...1]
Inode 309562:
carlo/bin/pc++ (309540)
carlo/bin/pcc (309540)
carlo/bin/pcc.unlock (309540)
Inode 702474:
carlo/projects/libcwd/libcwd/.svn/entries (700387)
carlo/projects/libcwd/libcwd/testsuite/tst_flush.o (700609)
[...1

Here, the hardlinks for inode 309562 are correct. The hardlink for inode 702474 is wrong, and
one of the files should be deleted. After you manually determined which file is wrong and deleted
it; it will not show up again when you rerun this command: Only those hardlinks are reported that
still exist in the output directory: you can only use - -show-hardlinks after running
--restore-all, or it will not result in any output since no output file exists.

TODO

The program has been written while | was learning how ext3 works. It's earliest functionality is
therefore not depending on things that | wrote later. An advantage is that those functionalities are
faster and will still work if the later code is broken; they are also more down-to-earth, so you can
use them to check what is really going on without depending on the more complex (and

heuristic) code that was added later. However, there are also disadvantages: The filtering code
that | wrote for --1s is not being used by the later written code that handles - -dump-names and

2008-03-12 http://www.xs4all.nl/~carlol7/howto/undelete_ext3.html #14

code written later. It is not easy to change that because that code uses the results of stage 2. |
think that a better algorithm to find which blocks are the correct ones for the last copy of a
directory would be the same as how | finally recovered files: by finding the last non-deleted inode
of that directory in the journal. This is not how it currently works though.

Command line options

All command line options are listed by providing --help on the command line:

$ ext3grep $IMAGE --help
Usage: /home/carlo/c++/ext3/main/ext3grep [options] [--] device-file

Options:
--version, -[vV] Print version and exit successfully.
--help, Print this help and exit successfully.
--superblock Print contents of superblock in addition to the rest.
If no action is specified then this option is implied.
--print Print content of block or inode, if any.
--1s Print directories with only one line per entry.
This option is often needed to turn on filtering.
--accept filen Accept 'filen' as a legal filename.
Can be used multiple times.
--journal Show content of journal.
- -show-path-inodes Show the inode of each directory component in paths.
Filters:
--group grp Only process group 'grp'.
--directory Only process directory inodes.
--after dtime Only entries deleted on or after 'dtime'.
--before dtime Only entries deleted before 'dtime’.
--deleted Only show/process deleted entries.
--allocated Only show/process allocated inodes/blocks.
--unallocated Only show/process unallocated inodes/blocks.
--reallocated Do not suppress entries with reallocated inodes.
Inodes are considered 'reallocated' if the entry
is deleted but the inode is allocated, but also when
the file type in the dir entry and the inode are
different.
--zeroed-inodes Do not suppress entries with zeroed inodes. Linked
entries are always shown, regardless of this option.
--depth depth Process directories recursively up till a depth
of 'depth'.
Actions:
--inode-to-block ino Print the block that contains inode 'ino'.
--inode ino Show info on inode 'ino'.

If --1s is used and the inode is a directory, then

the filters apply to the entries of the directory.

If you do not use --1s then --print is implied.
--block blk Show info on block 'blk'.

If --1s is used and the block is the first block

of a directory, then the filters apply to entries

of the directory.

If you do not use --1s then --print is implied.
--histogram=[atime|ctime|mtime|dtime|group]

Generate a histogram based on the given specs.

Using atime, ctime or mtime will change the

meaning of --after and --before to those times.
--journal-block jblk Show info on journal block 'jblk'
--journal-transaction seq

Show info on transaction with sequence number 'seq’.

- -dump-names Write the path of files to stdout.

This implies --1ls but suppresses it's output.
--search-start str Find blocks that start with the fixed string 'str'.
--search str Find blocks that contain the fixed string 'str'.
--search-inode blk Find inodes that refer to block 'blk'

--search-zeroed-inodes Return allocated inode table entries that are zeroed.

--inode-dirblock-table dir
Print a table for directory path 'dir' of directory
block numbers found and the inodes used for each file.

--show-journal-inodes ino
Show copies of inode 'ino' still in the journal.

--restore-file 'path' Will restore file 'path'. 'path' is relative to root
of the partition and does not start with a '/' (it
must be one of the paths returned by --dump-names).
The restored directory, file or symbolic link is
created in the current directory as ./'path'.

--restore-all As --restore-file but attempts to restore everything.
The use of --after is highly recommended because the
attempt to restore very old files will only result in
them being hard linked to a more recently deleted file
and as such polute the output.

--show-hardlinks Show all inodes that are shared by two or more files.

New functionality was more or less added top down, so this also gives a historic overview of how
the program was written.

Download

There is no download yet. Please email me at «carlo &t alinoe.com» and I'll send you the source
code.

Copyright © 2008 Carlo Wood

