

The Propeller chip,
a multi core micro controller...

A Presentation by Fredrik Safstrom
Bamse@alleberg.com

:: agenda ::

 An introduction to the Propeller.
 The internal workings, what makes it tick.
 Programming the Propeller in Spin and PASM.
 The Propeller Object Exchange and Wiki.
 Adding "Virtual peripherals".
 Programming the Propeller in Linux
 Demo / Questions
 Introduction to the Hydra.
 Game development on the Hydra.

:: introduction ::

 Developed in house by Parallax
 Runs at 3.3V
 8 32bit CPUs called COGs
 Each COG have 2KB of RAM
 Shared 32KB ROM and 32KB RAM
 The HUB manages shared resources
 32 Input/Output pins
 Two timers per COG
 One Video Generator per COG

:: introduction ::

 Normally runs at 80 MHz, 20 MIPS
 8 COGS give you 160 MIPS
 Programmed in SPIN or PASM
 SPIN is a High Level Language
 Compiled into byte code like Java
 Runs about 0.1 MIPS
 Propeller Assembler (PASM) runs at 20 MIPS
 Boot from either Serial or external EEPROM

:: internal workings ::

:: internal workings ::

:: internal workings ::

 8 32bit CPUs “COGS”, runs independently
 Each cog has 2KB or 512 Longs
 Assembler program must fit within 512 Longs
 Most instruction takes 4 cycles
 Each COG has two timers (A and B)

• Waveform Generation, PWM, Digital to Analog
• Analog to Digital, Frequency counting
• Measuring pulse width, RF carrier

 Each COG has one Video Generator
• Can generate NTSC, PAL or VGA

:: internal workings ::

 Shared resources
• 32 I/O pins
• System clock
• 32KB or RAM and 32KB ROM
• Locks aka Semaphores
• COG instructions

 System Clock and I/O pins are common
 Rest are Mutually Exclusive

• Controlled by the HUB
• Gives access in a “round robin” fashion.

:: internal workings ::

 I/O Pins
• Input only if no other COG set it to output
• Output low only if no other COG set it to high
• Output high if any COG set it to high
• 40mA Source/Sink each, total of 300mA

 System counter
• Derived from X-tal and PLL or Internal RC
• PLL 1x, 2x, 4x, 8x or 16x X-tal
• Normally 80MHz by 5MHz X-tal and PLL 16x
• PLL should be between 64MHz to 128MHz

:: internal workings ::

 HUB
• Gives access to Mutually Exclusive resources
• Memory, Locks, COG operations, System clock
• Round robin fashion, COG# 0, 1, 2, 3, 4, 5, 6, 7
• Runs at half speed, 16 cycles to make one turn
• HUB instructions takes 7-22 cycles
• 7 if lucky
• 15+7 worst case scenario
• HUB operation + 2 instructions to synchronize

:: internal workings ::

 No interrupts
• Wait for pin or System clock in real time
• Start new COG and continue wait

 Boot procedure
• 1. Try detect a host on pin 30 and 31
• 2. External EEPROM on pin 28 and 29
• 3. Stops and goes into shutdown mode
• Loads 32KB of data into RAM
• Starts Spin interpreter on COG 0
• Starts the main Spin program

:: internal workings ::

:: programming ::

 SPIN
• High level language
• Easy to learn
• Mix between Pascal, C and Python
• Relies on indentations for blocks { code }
• Runs about 0.1 MIPS
• Compiled into Byte code
• 32KB code space shared with data
• Supports Objects but it's not an OOP Language

:: programming ::

 Propeller Assembler
• Low level language
• Runs at 20 MIPS
• Relies on self modifying code
• Instructions as movi, movd and movs
• Instructions may or may not set C or Z flags
• All instructions conditional on C or Z flags
• [INSTR][ZCRI][CON][DEST][SRC] 6-4-4-9-9
• 512 instructions per COG
• No stack, no recursive subroutines

:: Propeller Object Exchange & Wiki ::

 Propeller Object Exchange
• Way to share code supported by Parallax
• Anyone can upload/download
• Entries are moderated by Parallax for quality
• Free under MIT License, X11
• http://obex.parallax.com/

 Propeller Wiki
• FAQ, Tutorials, Tips and tricks etc...
• I'm working on my second tutorial for this Wiki
• http://propeller.wikispaces.com/

http://obex.parallax.com/

:: Virtual peripherals ::

 Propeller have no built in peripherals
• No serial communication
• No Analog to Digital or Digital to Analog

 Use Virtual peripherals
• Download Objects from the Objects exchange
• More flexible than peripherals on fixed pins
• Switch functionality on pins
• Usually one COG per peripheral

:: Virtual peripherals ::

 Examples of Virtual peripherals
• RS 232, I2C, SPI, 1-wire, TCP Stack protocol
• Analog to Digital or Digital to Analog
• Signal generation, PWM, Duty, sound
• PAL, NTSC, VGA, LED, VFD, LCD displays
• Servo controller, Stepper motor, Wheel encoder
• Keyboard, mouse, joystick, PS2 pad
• Floating point functions, PID control, FFT
• Sensors, Temperature, GPS, Accelerometer
• External RAM, ROM, SD cards, Memory stick

:: Linux ::

 Not officially supported by Parallax
 Propellent command line compiler by Parallax
 Works under Wine
 Compile spin code to binary/EEPROM
 Use loader.py script to program propeller
 loader.py requires pyserial
 I got it to work on Ubuntu 8
 Supports MacOS as well
 More instructions on Propeller Wiki

:: How to get started ::

 Parallax have started kit
• Hydra $200, includes book + examples
• Hydra also available @ XGameStation.com
• Propeller started kit $100, printed manual
• Propeller Education kit $80
• Propeller Demo board $80
• Propeller Protoboard $20 + Prop plug $25
• Propeller Protoboard with USB $40
• Propeller Protoboard $20 + $5 serial components

Demo

 Show SPIN and Assembler language
 Dummy C=64 Terminal Demo

• My example uses two virtual peripherals
• One VGA and one RS232
• Reads a Commodore 64 Keyboard
• Displays on Monitor and sends over serial port
• Also receives data from serial port

:: Introduction to the Hydra ::

 Developed by André laMothe
• A demo board for Game development
• Built in USB port for programming/serial
• Two NES game pad sockets
• Keyboard and mouse
• Expansion port, replaceable X-tal
• 128KB EEPROM, debug LED
• Hydra Net to connect Hydras
• PAL/NTSC video and sound
• VGA output shared with expansion port

:: Game development on the Hydra ::

 Propeller powerful enough for games
 Learn low level game development

• Generate NTSC/PAL/VGA signals from scratch
• Generate sound from scratch with timers
• How to read game pads with shift registers
• Read Keyboard/mouse signals
• Hydra net communication protocol
• Use add-on Memory, EEPROM or SD cards
• Make your own add-ons with expansion port

Demo

